cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A037477 a(n) = Sum{d(i)*9^i: i=0,1,...,m}, where Sum{d(i)*8^i: i=0,1,...,m} is the base 8 representation of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 81, 82, 83, 84, 85
Offset: 0

Views

Author

Keywords

Comments

Numbers that do not contain the digit 8 in their base 9 expansion. - M. F. Hasler, Oct 05 2014

Examples

			a(63) = 7*9+7 = 70 since 63 = 77[8], i.e., "77" when written in base 8;
a(64) = 1*9^2 = 81 since 64 = 100[8]. - _M. F. Hasler_, Oct 05 2014
		

Crossrefs

Cf. A248375.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), this sequence (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Mathematica
    Table[FromDigits[RealDigits[n, 8], 9], {n, 0, 100}]
    Select[Range[0,100],DigitCount[#,9,8]==0&] (* Harvey P. Dale, Aug 06 2024 *)
  • PARI
    a(n) = vector(#n=digits(n,8),i,9^(#n-i))*n~ \\ M. F. Hasler, Oct 05 2014
    
  • PARI
    a(n) = fromdigits(digits(n, 8), 9); \\ François Marques, Oct 15 2020
    
  • Python
    def A037477(n): return int(oct(n)[2:],9) # Chai Wah Wu, Jan 27 2025

Formula

For n<64, a(n) = floor(9n/8) = A248375(n). - M. F. Hasler, Oct 05 2014

Extensions

Offset changed to 0 by Clark Kimberling, Aug 14 2012

A047226 Numbers that are congruent to {0, 1, 2, 3, 4} mod 6; a(n)=floor(6(n-1)/5).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | n mod 6 in [0..4]]; // Vincenzo Librandi, Jan 06 2013
  • Maple
    A047226 := proc(n)
        option remember;
        if n <= 6 then
            op(n,[0,1,2,3,4,6]) ;
        else
            procname(n-1)+procname(n-5)-procname(n-6) ;
        end if;
    end proc: # R. J. Mathar, Jul 25 2013
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Formula

G.f.: x^2*(1+x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Sep 17 2015, Jul 16 2013: (Start)
a(n) = floor( 6*(n-1)/5 ).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
a(n) = n - 1 + floor((n-1)/5). (End)
Sum_{n>=2} (-1)^n/a(n) = (9-4*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) + log(2)/6. - Amiram Eldar, Dec 17 2021

Extensions

Explicit formula added to definition by M. F. Hasler, Oct 05 2014

A168183 Numbers that are not multiples of 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(z) = digit_sum(a(n)+z). - Max Lacoma, Sep 19 2019. Giovanni Resta: this follows immediately from the well-known fact that sod(x) == x (mod 9).

Crossrefs

Complement of A008591.

Programs

Formula

A168182(a(n)) = 1.
A010888(a(n)) = A010887(n-1).
A109012(a(n)) < 9.
From Wesley Ivan Hurt, Sep 12 2015: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9), n>9.
a(n) = n + floor((n-1)/8). (End)
From Philippe Deléham, Dec 05 2016: (Start)
a(n) = 1 + A248375(n-1).
G.f.: x*(1-x^9)/((1-x)^2*(1-x^8)). (End)
E.g.f.: 1 + (1/8)*(-cos(x) + (-5+9*x)*cosh(x) - 2*cos(x/sqrt(2))*cosh(x/sqrt(2)) + sin(x) + (-4+9*x)*sinh(x) + 2*sin(x/sqrt(2))*(sqrt(2)*cosh(x/sqrt(2)) + sinh(x/sqrt(2)))). - Stefano Spezia, Sep 20 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3) + 3*cosec(2*Pi/9) - 3*tan(Pi/18)) * Pi/27. - Amiram Eldar, May 11 2025

A281899 a(n) = n + 6*floor(n/3).

Original entry on oeis.org

0, 1, 2, 9, 10, 11, 18, 19, 20, 27, 28, 29, 36, 37, 38, 45, 46, 47, 54, 55, 56, 63, 64, 65, 72, 73, 74, 81, 82, 83, 90, 91, 92, 99, 100, 101, 108, 109, 110, 117, 118, 119, 126, 127, 128, 135, 136, 137, 144, 145, 146, 153, 154, 155, 162, 163, 164, 171, 172, 173, 180, 181, 182, 189
Offset: 0

Views

Author

Bruno Berselli, Feb 06 2017

Keywords

Comments

Equivalently, numbers that are congruent to {0, 1, 2} mod 9.
Also numbers m such that floor(m/3) = 3*floor(m/9).
The n-th term is 3*n, 3*n-2 or 3*n-4.
For n > 0, numbers k such that 3 | floor(k/3). - Wesley Ivan Hurt, Dec 01 2020

Crossrefs

Cf. A002264.
Subsequence of A060464 and A248375.
The first differences are in A105395.
Cf. similar sequences with formula n+i*floor(n/3): A004773 (i=1), A047217 (i=2), A047240 (i=3), A047354 (i=4), A047469 (i=5), this sequence (i=6).
Cf. numbers that are congruent to {0, 1, 2} mod j: the sequences are listed in the previous row for j = 4..9, respectively.

Programs

  • Magma
    [n+6*(n div 3): n in [0..70]];
  • Maple
    A281899:=n->n+6*floor(n/3): seq(A281899(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Table[n + 6 Floor[n/3], {n, 0, 70}]
    LinearRecurrence[{1,0,1,-1},{0,1,2,9},90] (* Harvey P. Dale, Feb 25 2018 *)
  • Maxima
    makelist(n+6*floor(n/3), n, 0, 70);
    
  • PARI
    a(n)=n\3*6 + n \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    [n+6*int(n/3) for n in range(70)]
    
  • Sage
    [n+6*floor(n/3) for n in range(70)]
    

Formula

G.f.: x*(1 + x + 7*x^2)/((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4).
a(n) = 3*n - 2*(n mod 3). In general, n + 3*h*floor(n/3) = (h+1)*n - h*(n mod 3).
a(n) + a(n+s) = a(2*n+s-1) + 1, where s is nonnegative and not divisible by 3. Example: for s=14, a(n) + a(n+14) = a(2*n+13) + 1; for n=3, a(3) + a(17) = a(19) + 1 = 9 + 47 = 55 + 1 = 56.
a(6*k+r) = 18*k + a(r), where 0 <= r <= 5.
a(n) = 7*A002264(n) + A002264(n+1) + A002264(n+2).

A047368 Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 7 in [0..5]]; // Wesley Ivan Hurt, Jun 15 2016
  • Maple
    A047368:=n->(42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36: seq(A047368(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 15 2016 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 7}, 100] (* Vincenzo Librandi, Jun 16 2016 *)
  • PARI
    a(n)=(n-1)*7\6 \\ M. F. Hasler, Oct 05 2014
    

Formula

G.f.: x^2*(1+x+x^2+x^3+x^4+2*x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36.
a(6k) = 7k-2, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)

Extensions

Crossrefs and explicit formula in name added by M. F. Hasler, Oct 05 2014

A272574 a(n) = f(9, f(8, n)), where f(k,m) = floor(m*k/(k-1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 90
Offset: 0

Views

Author

Bruno Berselli, May 03 2016

Keywords

Comments

Also, numbers that are congruent to {0..6} mod 9.
The initial terms coincide with those of A037475 and A039111. First disagreement is after 60 (index 48): a(49) = 63, A037475(49) = 81 and A039111(50) = 71.

Crossrefs

Cf. A248375: f(9,n).
Cf. similar sequences with the formula f(k, f(k-1, n)): A008585 (k=3), A042948 (k=4), A047217 (k=5), A047246 (k=6), A047337 (k=7), A047602 (k=8), this sequence (k=9), A272576 (k=10).

Programs

  • Magma
    k:=9; f:=func; [f(k,f(k-1,n)): n in [0..70]];
    
  • Maple
    f := (k, m) -> floor(m*k/(k-1)):
    a := n -> f(9, f(8, n)):
    seq(a(n), n = 0..70); # Peter Luschny, May 03 2016
  • Mathematica
    f[k_, m_] := Floor[m*k/(k-1)];
    a[n_] := f[9, f[8, n]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 09 2016 *)
    CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + 3 x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 70}], x] (* or *)
    Table[(63 n - 12 - 12 Mod[n, 7] + 2 Mod[-n - 1, 7])/49, {n, 0, 70}] (* Michael De Vlieger, Dec 25 2016 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,9},90] (* Harvey P. Dale, May 08 2018 *)
  • Sage
    f = lambda k, m: floor(m*k/(k-1))
    a = lambda n: f(9, f(8, n))
    [a(n) for n in range(71)] # Peter Luschny, May 03 2016

Formula

G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + 3*x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8).
a(n) = (63*n - 12 - 12*(n mod 7) + 2*((-n-1) mod 7))/49. - Wesley Ivan Hurt, Dec 25 2016
Showing 1-6 of 6 results.