cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004773 Numbers congruent to {0, 1, 2} mod 4: a(n) = floor(4*n/3).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90
Offset: 0

Views

Author

Keywords

Comments

The sequence b(n) = floor((4/3)*(n+2)) appears as an upper bound in Fijavz and Wood.
Binary expansion does not end in 11.
From Guenther Schrack, May 04 2023: (Start)
The sequence is the interleaving of the sequences A008586, A016813, A016825, in that order.
Let S(n) = a(n) + a(n+1) + a(n+2). Then floor(S(n)/3) = A042968(n+1), round(S(n)/3) = a(n+1), ceiling(S(n)/3) = A042965(n+2). (End)

Crossrefs

Cf. A177702 (first differences), A000969 (partial sums).
Cf. A032766, this sequence, A001068, A047226, A047368, A004777.
Cf. similar sequences with formula n+i*floor(n/3) listed in A281899.

Programs

  • Magma
    [n: n in [0..100] | n mod 4 in [0..2]]; // Vincenzo Librandi, Dec 23 2010
    
  • Maple
    seq(floor(n/3)+n,n=0..68); # Gary Detlefs, Mar 20 2010
  • Mathematica
    f[n_] := Floor[4 n/3]; Array[f, 69, 0] (* Robert G. Wilson v, Dec 24 2010 *)
    fQ[n_] := Mod[n, 4] != 3; Select[ Range[0, 90], fQ] (* Robert G. Wilson v, Dec 24 2010 *)
    a[0] = 0; a[n_] := a[n] = a[n - 1] + 2 - If[ Mod[a[n - 1], 4] < 2, 1, 0]; Array[a, 69, 0] (* Robert G. Wilson v, Dec 24 2010 *)
    CoefficientList[ Series[x (1 + x + 2 x^2)/((1 - x) (1 - x^3)), {x, 0, 68}], x] (* Robert G. Wilson v, Dec 24 2010 *)
  • PARI
    a(n)=4*n\3 \\ Charles R Greathouse IV, Sep 27 2012

Formula

G.f.: x*(1+x+2*x^2)/((1-x)*(1-x^3)).
a(0) = 0, a(n+1) = a(n) + a(n) mod 4 + 0^(a(n) mod 4). - Reinhard Zumkeller, Mar 23 2003
a(n) = A004396(n) + A004523(n); complement of A004767. - Reinhard Zumkeller, Aug 29 2005
a(n) = floor(n/3) + n. - Gary Detlefs, Mar 20 2010
a(n) = (12*n-3+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017
E.g.f.: (3*exp(x)*(4*x - 1) + exp(-x/2)*(3*cos((sqrt(3)*x)/2) + sqrt(3)*sin((sqrt(3)*x)/2)))/9. - Stefano Spezia, Jun 09 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8 + sqrt(2)*log(sqrt(2)+2)/4 + (2-sqrt(2))*log(2)/8. - Amiram Eldar, Dec 05 2021
From Guenther Schrack, May 04 2023: (Start)
a(n) = (12*n - 3 + w^(2*n)*(w + 2) - w^n*(w - 1))/9 where w = (-1 + sqrt(-3))/2.
a(n) = 2*floor(n/3) + floor((n+1)/3) + floor((n+2)/3).
a(n) = (4*n - n mod 3)/3.
a(n) = a(n-3) + 4.
a(n) = a(n-1) + a(n-3) - a(n-4).
a(n) = 4*A002264(n) + A010872(n).
a(n) = A042968(n+1) - 1.
(End)

A047226 Numbers that are congruent to {0, 1, 2, 3, 4} mod 6; a(n)=floor(6(n-1)/5).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | n mod 6 in [0..4]]; // Vincenzo Librandi, Jan 06 2013
  • Maple
    A047226 := proc(n)
        option remember;
        if n <= 6 then
            op(n,[0,1,2,3,4,6]) ;
        else
            procname(n-1)+procname(n-5)-procname(n-6) ;
        end if;
    end proc: # R. J. Mathar, Jul 25 2013
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Formula

G.f.: x^2*(1+x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Sep 17 2015, Jul 16 2013: (Start)
a(n) = floor( 6*(n-1)/5 ).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
a(n) = n - 1 + floor((n-1)/5). (End)
Sum_{n>=2} (-1)^n/a(n) = (9-4*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) + log(2)/6. - Amiram Eldar, Dec 17 2021

Extensions

Explicit formula added to definition by M. F. Hasler, Oct 05 2014

A248375 a(n) = floor(9*n/8).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 0

Views

Author

M. F. Hasler, Oct 05 2014

Keywords

Comments

Also: numbers not congruent to 8 (mod 9), or numbers whose base-9 expansion does not end in the digit "8".
Paz proves that for all n>0 there is a prime in Breusch's interval [n; a(n+3)], cf A248371.

Crossrefs

Programs

  • Magma
    [Floor(9*n/8): n in [0..90]]; // Bruno Berselli, Oct 06 2014
  • Mathematica
    Table[Floor[9 n/8], {n, 0, 90}] (* Bruno Berselli, Oct 06 2014 *)
  • PARI
    a(n)=9*n\8
    

Formula

G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + 2*x^7) / ((1 + x)*(1 - x)^2*(1 + x^2)*(1 + x^4)). [Bruno Berselli, Oct 06 2014]
a(n) = n + floor(n/8) = a(n-1) + a(n-8) - a(n-9). [Bruno Berselli, Oct 06 2014]
a(n) = A168183(n+1) - 1. - Philippe Deléham, Dec 05 2013

A245477 Period 6: repeat [1, 1, 1, 1, 1, 2].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Hailey R. Olafson, Jul 23 2014

Keywords

Comments

First differences of A047368. The first differences of this sequence are in A131533. - Wesley Ivan Hurt, Jul 24 2014
Binomial Transform of a(n) gives: 1, 2, 4, 8, 16, 33, 70, 149, 312, 638, 1276, 2511, ... - Wesley Ivan Hurt, Aug 13 2014

Crossrefs

Programs

  • Magma
    [Floor((n+1)*7/6) - Floor((n)*7/6) : n in [0..100]]; // Wesley Ivan Hurt, Aug 06 2014
  • Maple
    A:= n -> piecewise(n mod 6 = 5, 2, 1);
    seq(A(n), n=0..100); # Robert Israel, Jul 23 2014
  • Mathematica
    Table[2 - Sign[Mod[n + 1, 6]], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 24 2014 *)
    PadRight[{},120,{1,1,1,1,1,2}] (* Harvey P. Dale, Jun 02 2016 *)
  • PARI
    a(n) = 7*(n+1)\6 - 7*n\6; \\ Michel Marcus, Jul 23 2014
    
  • Sage
    [floor((n+1)*7/6) - floor((n)*7/6) for n in [0..200]]
    

Formula

a(n) = floor((n+1)*7/6) - floor((n)*7/6).
G.f.: 1/(1-x) + x^5/(1-x^6). - Robert Israel, Jul 23 2014
From Wesley Ivan Hurt, Jul 24 2014, Aug 06-29 2014: (Start)
a(n) = 2 - sign((n+1) mod 6).
a(n) = 3 - 2^sign((n+1) mod 6).
a(n) = A172051(n) + 1.
a(2n) = 1, a(2n+1) = A177702(n).
Sum_{i=0..n-2} a(i) = A047368(n), n>0.
a(n) = 1 + mod(n, 1 + mod(n-1, 3)).
a(n) = 1 + binomial(mod(5n + 10, 6), 5). (End)
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (7 - cos(n*Pi) + cos(n*Pi/3) - cos(2*n*Pi/3) - sqrt(3)*sin(n*Pi/3) - sqrt(3)*sin(2*n*Pi/3))/6. (End)

A047421 Floor(8n/7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75
Offset: 0

Views

Author

Keywords

Comments

Up to the offset identical to A004777, cf formula. - M. F. Hasler, Oct 06 2014

Crossrefs

Programs

  • Mathematica
    Table[Floor[8 n/7], {n, 0, 80}] (* Bruno Berselli, Oct 06 2014 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,8},70] (* Harvey P. Dale, Mar 06 2016 *)
  • PARI
    a(n)=n\7+n \\ M. F. Hasler, Oct 06 2014

Formula

a(n) = A004777(n+1). - M. F. Hasler, Oct 06 2014
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6) / (1 - x - x^7 + x^8). [Bruno Berselli, Oct 06 2014]
a(n) = n + floor(n/7) = a(n-1) + a(n-7) - a(n-8). [Bruno Berselli, Oct 06 2014]

Extensions

More terms from Ray Chandler, Sep 05 2004
Restored to version of early 2008 by M. F. Hasler, Oct 06 2014
Showing 1-5 of 5 results.