cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256227 Naught-y numbers (A011540) that after removing all zeros become zeroless primes (A038618).

Original entry on oeis.org

20, 30, 50, 70, 101, 103, 107, 109, 110, 130, 170, 190, 200, 203, 209, 230, 290, 300, 301, 307, 310, 370, 401, 403, 407, 410, 430, 470, 500, 503, 509, 530, 590, 601, 607, 610, 670, 700, 701, 703, 709, 710, 730, 790, 803, 809, 830, 890, 907, 970, 1001, 1003, 1007, 1009, 1010, 1013, 1027, 1030
Offset: 1

Views

Author

Keywords

Crossrefs

A256186 is the intersection of this sequence with A000040.

Programs

  • Maple
    N:= 4: # to produce all terms with <= N digits
    ZLO:= proc(d) # produce set of d-digit odd zeroless numbers
           option remember;
           if d = 1 then {1,3,5,7,9}
           else
             map(t -> seq(t+x*10^(d-1),x=1..9), ZLO(d-1))
           fi
    end proc:
    addzeros:= proc(x,d) # d-digit numbers formed by inserting 0's into x
            local L,n,R;
          L:= convert(x,base,10);
          n:= nops(L);
          R:= map(t -> [op(t),d], combinat[choose](d-1,n-1));
          seq(add(L[i]*10^(r[i]-1),i=1..n), r = R);
        end proc:
    Z[1]:= {2,3,5,7}:
    for i from 2 to N-1 do Z[i]:= select(isprime,ZLO(i)) od:
    `union`(seq(seq(map(addzeros,Z[i],d), i=1..d-1),d=2..N));
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Mar 19 2015
  • Mathematica
    ss={};Do[id=IntegerDigits[p];If[Min[id]<1&&PrimeQ[FromDigits[Delete[id,Position[id,0]]]],ss={ss,p}],{p,20,2000}];Flatten[ss]
    Select[Range[1200],DigitCount[#,10,0]>0&&PrimeQ[FromDigits[DeleteCases[ IntegerDigits[ #],0]]]&] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    is(n)=my(d=digits(n),e=select(x->x,d)); #e<#d && isprime(fromdigits(e)) \\ Charles R Greathouse IV, Mar 19 2015

A329737 Cyclops primes that remain prime after being "blinded".

Original entry on oeis.org

101, 103, 107, 109, 307, 401, 503, 509, 601, 607, 701, 709, 809, 907, 11071, 11087, 11093, 12037, 12049, 12097, 13099, 14029, 14033, 14051, 14071, 14081, 14083, 14087, 15031, 15053, 15083, 16057, 16063, 16067, 16069, 16097, 17021, 17033, 17041, 17047, 17053
Offset: 1

Views

Author

Rodolfo Ruiz-Huidobro, Nov 20 2019

Keywords

Comments

There are 14 of these primes with 3 digits and 302 with 5 digits.

Examples

			The first term, a(1), is 101 because if you remove the "cyclops' eye" it remains a prime (11) and because 101 is the 1st cyclops prime.
307 is a term because when you remove the "0" it remains a prime: 37.
		

Crossrefs

Intersection of A256186 and A134809.

Programs

  • Magma
    a:=[]; f:=func; g:=func; for n in [1..20000] do if f(n) and IsPrime(g(n)) then Append(~a,n); end if; end for; a; // Marius A. Burtea, Nov 20 2019

A321151 Primes that yield squares after deletion of their zero digits.

Original entry on oeis.org

409, 1021, 1069, 1201, 1609, 2089, 3061, 5209, 9601, 10069, 10369, 18049, 20089, 20809, 37021, 37201, 40009, 44089, 44809, 50329, 50929, 52009, 59029, 59209, 60889, 62401, 70921, 79201, 96001, 100069, 100609, 101449, 102001, 102769, 103069, 104161, 106129, 106801, 108769, 109321
Offset: 1

Views

Author

Marius A. Burtea, Nov 23 2018

Keywords

Comments

Subsequence of A056709. The squares divisible by 2, 3 or 5 cannot be obtained. Most of the squares obtained seem to be squares of prime or semiprime numbers. Among the first 399 squares obtained are 289 squares of prime numbers, 104 squares of semiprimes and 6 other squares; these squares were obtained by testing the prime numbers up to 10^7. Deletion of the zero digits from primes up to 10^8 yields 929 squares of prime numbers, 506 squares of semiprimes and 47 other squares. Do similar results occur when larger primes are considered?
From David A. Corneth, Nov 26 2018: (Start)
Terms can be obtained by listing squares coprime to 30, inserting zeros between digits, and testing the primality of the resulting numbers.
Records for omega(s) where s is a square producing a term occur at terms 409, 50929, 10713481, 3601722361, 1531869148081, 807916258118689. (End)

Examples

			      409 is prime and   49 =  7^2 is a square.
     9601 is prime and  961 = 31^2 is a square.
    20809 is prime and  289 = 17^2 is a square.
    10069 is prime and  169 = 13^2 is a square.
   103069 is prime and 1369 = 37^2 is a square.
  1030069 is prime and 1369 = 37^2 is a square.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[n] && IntegerQ[Sqrt[FromDigits[Select[IntegerDigits[n], #!=0  &]]]]; Select[Range[100000], aQ] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    isok(p) = isprime(p) && issquare(fromdigits(select(x->x, digits(p)))); \\ Michel Marcus, Nov 26 2018
    
  • PARI
    \\ See Corneth link \\ David A. Corneth, Nov 26 2018
Showing 1-3 of 3 results.