A256227 Naught-y numbers (A011540) that after removing all zeros become zeroless primes (A038618).
20, 30, 50, 70, 101, 103, 107, 109, 110, 130, 170, 190, 200, 203, 209, 230, 290, 300, 301, 307, 310, 370, 401, 403, 407, 410, 430, 470, 500, 503, 509, 530, 590, 601, 607, 610, 670, 700, 701, 703, 709, 710, 730, 790, 803, 809, 830, 890, 907, 970, 1001, 1003, 1007, 1009, 1010, 1013, 1027, 1030
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
N:= 4: # to produce all terms with <= N digits ZLO:= proc(d) # produce set of d-digit odd zeroless numbers option remember; if d = 1 then {1,3,5,7,9} else map(t -> seq(t+x*10^(d-1),x=1..9), ZLO(d-1)) fi end proc: addzeros:= proc(x,d) # d-digit numbers formed by inserting 0's into x local L,n,R; L:= convert(x,base,10); n:= nops(L); R:= map(t -> [op(t),d], combinat[choose](d-1,n-1)); seq(add(L[i]*10^(r[i]-1),i=1..n), r = R); end proc: Z[1]:= {2,3,5,7}: for i from 2 to N-1 do Z[i]:= select(isprime,ZLO(i)) od: `union`(seq(seq(map(addzeros,Z[i],d), i=1..d-1),d=2..N)); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Mar 19 2015
-
Mathematica
ss={};Do[id=IntegerDigits[p];If[Min[id]<1&&PrimeQ[FromDigits[Delete[id,Position[id,0]]]],ss={ss,p}],{p,20,2000}];Flatten[ss] Select[Range[1200],DigitCount[#,10,0]>0&&PrimeQ[FromDigits[DeleteCases[ IntegerDigits[ #],0]]]&] (* Harvey P. Dale, Jan 01 2024 *)
-
PARI
is(n)=my(d=digits(n),e=select(x->x,d)); #e<#d && isprime(fromdigits(e)) \\ Charles R Greathouse IV, Mar 19 2015
Comments