cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A257252 Transpose of square array A257251.

Original entry on oeis.org

2, 6, 2, 20, 6, 2, 42, 10, 6, 2, 110, 28, 20, 6, 2, 156, 22, 14, 10, 6, 2, 272, 52, 44, 28, 20, 6, 2, 342, 34, 26, 22, 14, 10, 6, 2, 506, 76, 68, 52, 44, 28, 20, 6, 2, 812, 138, 114, 102, 78, 66, 42, 10, 6, 2, 930, 58, 46, 38, 34, 26, 22, 14, 20, 6, 2, 1332, 186, 174, 138, 114, 102, 78, 66, 42, 10, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2015

Keywords

Comments

See A257251.

Examples

			The top left corner of the array:
  2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332
  2, 6, 10, 28,  22,  52,  34,  76, 138,  58, 186,  148
  2, 6, 20, 14,  44,  26,  68, 114,  46, 174, 124,   74
  2, 6, 10, 28,  22,  52, 102,  38, 138, 116,  62,  148
  2, 6, 20, 14,  44,  78,  34, 114,  92,  58, 124,  222
  2, 6, 10, 28,  66,  26, 102,  76,  46, 116, 186,  222
  2, 6, 20, 42,  22,  78,  68,  38,  92, 174, 186,   74
  2, 6, 10, 14,  66,  52,  34,  76, 138, 174,  62,  222
  2, 6, 20, 42,  44,  26,  68, 114, 138,  58, 186,  148
  2, 6, 10, 28,  22,  52, 102, 114,  46, 174, 124,   74
  2, 6, 20, 14,  44,  78, 102,  38, 138, 116,  62,  222
  2, 6, 10, 28,  66,  78,  34, 114,  92,  58, 186,  148
  2, 6, 20, 14,  66,  26, 102,  76,  46, 174, 124,  222
  2, 6, 10, 28,  22,  78,  68,  38, 138, 116, 186,  296
  2, 6, 20, 42,  66,  52,  34, 114,  92, 174, 248,  148
  2, 6, 10, 14,  44,  26, 102,  76, 138, 232, 124,   74
  ...
		

Crossrefs

Transpose: A257251.
Row 1: A036689.
Cf. also A083140, A257254 (same array but with terms divided by 2).

Programs

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020

A257257 Square array A(row,col) = A255127(row,col+1) - A255127(row,col): the first differences of each row of Ludic array.

Original entry on oeis.org

2, 2, 6, 2, 6, 14, 2, 6, 16, 24, 2, 6, 14, 28, 44, 2, 6, 16, 26, 48, 60, 2, 6, 14, 28, 48, 60, 84, 2, 6, 16, 24, 52, 64, 86, 122, 2, 6, 14, 26, 48, 66, 94, 126, 142, 2, 6, 16, 28, 48, 62, 86, 132, 144, 176, 2, 6, 14, 26, 44, 60, 94, 120, 146, 166, 216, 2, 6, 16, 24, 48, 64, 86, 132, 142, 180, 234, 252
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2015

Keywords

Comments

The array A(row,col) is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left corner of the array:
    2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2
    6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6
   14,  16,  14,  16,  14,  16,  14,  16,  14,  16,  14,  16,  14,  16,  14
   24,  28,  26,  28,  24,  26,  28,  26,  24,  28,  26,  28,  24,  26,  28
   44,  48,  48,  52,  48,  48,  44,  48,  52,  48,  48,  48,  44,  52,  48
   60,  60,  64,  66,  62,  60,  64,  62,  60,  70,  60,  60,  62,  64,  60
   84,  86,  94,  86,  94,  86,  82,  92,  88,  92,  88,  90,  90,  84,  90
  122, 126, 132, 120, 132, 126, 130, 126, 120, 132, 128, 126, 130, 128, 126
  142, 144, 146, 142, 146, 138, 150, 148, 140, 148, 146, 138, 150, 138, 150
  176, 166, 180, 168, 176, 178, 170, 178, 170, 180, 174, 172, 176, 178, 176
  216, 234, 226, 242, 228, 226, 240, 218, 234, 246, 220, 230, 234, 226, 234
  252, 270, 254, 274, 258, 254, 258, 276, 262, 266, 258, 256, 264, 276, 264
  274, 284, 268, 284, 304, 270, 282, 278, 294, 282, 282, 276, 282, 288, 292
  308, 316, 314, 316, 320, 316, 312, 308, 324, 336, 316, 302, 316, 314, 322
  360, 360, 354, 368, 360, 372, 370, 368, 352, 360, 380, 354, 370, 380, 352
  412, 434, 424, 420, 426, 440, 426, 420, 432, 424, 422, 444, 424, 422, 430
  ...
		

Crossrefs

Column 1: A256482.
Cf. A255127.
Cf. A257258 (same array but with terms divided by 2).
Cf. also arrays A257251 and A257255.

Programs

Formula

A(row,col) = A255127(row,col+1) - A255127(row,col).
A(row,col) = 2*A257258(row,col).

A145011 First differences of A007775.

Original entry on oeis.org

6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 4, 6, 2
Offset: 1

Views

Author

Ki Punches, Feb 25 2009

Keywords

Comments

Also the first differences of A084968 divided by 7. - Antti Karttunen, May 01 2015

Crossrefs

Multiplied by 7: row 4 of A257251.

Programs

  • Haskell
    a145011 n = a145011_list !! (n-1)
    a145011_list = zipWith (-) (tail a007775_list) a007775_list
    -- Reinhard Zumkeller, Jan 06 2013
    
  • Mathematica
    Differences[Select[Range[400],GCD[#,30]==1&]] (* Harvey P. Dale, Dec 07 2011 *)
  • PARI
    a(n)=[4,6,4,2,4,2][n%8+1] \\ Charles R Greathouse IV, Oct 20 2013

Formula

Period 8: repeat 6,4,2,4,2,4,6,2.
a(n) = 2*((abs(abs((n mod 8) - 3) - 1) mod 3) + 1). - Pieter Stadhouders, Mar 09 2010
G.f.: x*(-2*x^7 - 6*x^6 - 4*x^5 - 2*x^4 - 4*x^3 - 2*x^2 - 4*x - 6)/(x^8 - 1). - Chai Wah Wu, Feb 16 2021

Extensions

Edited by Omar E. Pol, Mar 02 2009
Offset corrected by Reinhard Zumkeller, Jan 06 2013

A257253 Square array A(row,col) = (1/2) * (A083221(row,col+1) - A083221(row,col)): half of the first differences of each row of array constructed from the sieve of Eratosthenes.

Original entry on oeis.org

1, 1, 3, 1, 3, 10, 1, 3, 5, 21, 1, 3, 10, 14, 55, 1, 3, 5, 7, 11, 78, 1, 3, 10, 14, 22, 26, 136, 1, 3, 5, 7, 11, 13, 17, 171, 1, 3, 10, 14, 22, 26, 34, 38, 253, 1, 3, 5, 21, 33, 39, 51, 57, 69, 406, 1, 3, 10, 7, 11, 13, 17, 19, 23, 29, 465
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2015

Keywords

Comments

The array A(row,col) is read by its downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left corner of the array:
     1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1
     3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3,   3
    10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10,   5,  10
    21,  14,   7,  14,   7,  14,  21,   7,  21,  14,   7,  14,   7,  14,  21
    55,  11,  22,  11,  22,  33,  11,  33,  22,  11,  22,  33,  33,  11,  33
    78,  26,  13,  26,  39,  13,  39,  26,  13,  26,  39,  39,  13,  39,  26
   136,  17,  34,  51,  17,  51,  34,  17,  34,  51,  51,  17,  51,  34,  17
   171,  38,  57,  19,  57,  38,  19,  38,  57,  57,  19,  57,  38,  19,  57
   253,  69,  23,  69,  46,  23,  46,  69,  69,  23,  69,  46,  23,  69,  46
   406,  29,  87,  58,  29,  58,  87,  87,  29,  87,  58,  29,  87,  58,  87
   465,  93,  62,  31,  62,  93,  93,  31,  93,  62,  31,  93,  62,  93, 124
   666,  74,  37,  74, 111, 111,  37, 111,  74,  37, 111,  74, 111, 148,  74
   820,  41,  82, 123, 123,  41, 123,  82,  41, 123,  82, 123, 164,  82,  41
   903,  86, 129, 129,  43, 129,  86,  43, 129,  86, 129, 172,  86,  43,  86
  1081, 141, 141,  47, 141,  94,  47, 141,  94, 141, 188,  94,  47,  94,  47
  1378, 159,  53, 159, 106,  53, 159, 106, 159, 212, 106,  53, 106,  53, 106
  ...
		

Crossrefs

Transpose: A257254.
Cf. A083221, A257251 (same array but with terms multiplied by 2).
Column 1: A008837.
Row 4: (7/2) * A145011.

Programs

Formula

A(row,col) = (1/2) * (A083221(row,col+1) - A083221(row,col)).
A(row,col) = A257251(row,col)/2.

A257255 Square array A(row,col) = A255545(row,col+1) - A255545(row,col): the first differences of each row of Lucky-Unlucky array.

Original entry on oeis.org

1, 2, 2, 2, 6, 12, 2, 6, 20, 18, 2, 6, 22, 30, 32, 2, 6, 20, 34, 52, 40, 2, 6, 22, 30, 50, 62, 64, 2, 6, 20, 32, 52, 64, 92, 84, 2, 6, 22, 30, 54, 62, 100, 116, 108, 2, 6, 20, 34, 48, 72, 92, 120, 156, 124, 2, 6, 22, 30, 50, 64, 102, 120, 152, 168, 138, 2, 6, 20, 32, 52, 62, 96, 124, 156, 168, 206, 170
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2015

Keywords

Comments

The array A(row,col) is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left corner of the array:
    1,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2,   2
    2,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6,   6
   12,  20,  22,  20,  22,  20,  22,  20,  22,  20,  22,  20,  22,  20,  22
   18,  30,  34,  30,  32,  30,  34,  30,  32,  30,  34,  30,  32,  30,  34
   32,  52,  50,  52,  54,  48,  50,  52,  50,  54,  48,  54,  52,  48,  54
   40,  62,  64,  62,  72,  64,  62,  64,  66,  62,  64,  62,  66,  64,  62
   64,  92, 100,  92, 102,  96,  96,  94,  96,  96,  96,  96,  98,  94,  98
   84, 116, 120, 120, 124, 116, 124, 116, 118, 122, 120, 118, 126, 120, 120
  108, 156, 152, 156, 162, 148, 162, 152, 150, 160, 152, 154, 156, 156, 158
  124, 168, 168, 174, 168, 164, 178, 170, 166, 174, 174, 168, 176, 162, 168
  138, 206, 192, 198, 198, 190, 200, 202, 192, 200, 190, 198, 200, 192, 208
  170, 232, 236, 238, 230, 244, 230, 240, 226, 242, 238, 234, 230, 246, 222
  206, 270, 274, 278, 268, 272, 280, 278, 268, 276, 276, 282, 266, 270, 286
  214, 284, 300, 286, 302, 288, 292, 288, 290, 294, 292, 290, 298, 284, 300
  274, 366, 356, 390, 358, 372, 354, 374, 378, 360, 360, 376, 366, 372, 366
  296, 384, 418, 392, 400, 396, 398, 390, 396, 402, 394, 402, 398, 400, 392
  ...
		

Crossrefs

Column 1: A257256.
Cf. A255545.
Cf. also arrays A257251 and A257257.

Programs

Formula

A(row,col) = A255545(row,col+1) - A255545(row,col).

A257513 Square array A(row,col) = A083221(row+1,col) - A083221(row,col): the first differences of each column of array constructed from the sieve of Eratosthenes.

Original entry on oeis.org

1, 5, 2, 9, 16, 2, 13, 20, 24, 4, 17, 34, 42, 72, 2, 21, 38, 36, 66, 48, 4, 25, 52, 54, 96, 78, 120, 2, 29, 56, 48, 90, 60, 102, 72, 4, 33, 70, 66, 120, 90, 144, 114, 168, 6, 37, 74, 88, 158, 124, 194, 160, 230, 312, 2, 41, 88, 92, 138, 84, 150, 96, 162, 232, 120, 6, 45, 92, 114, 190, 140, 226, 176, 262, 360, 248, 408, 4
Offset: 1

Views

Author

Antti Karttunen, May 01 2015

Keywords

Comments

The array is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left corner of the array:
1,   5,   9,  13,  17,  21,  25,  29,  33,  37,  41,  45,  49,  53,  57,  61
2,  16,  20,  34,  38,  52,  56,  70,  74,  88,  92, 106, 110, 124, 128, 142
2,  24,  42,  36,  54,  48,  66,  88,  92, 114, 132, 126, 144, 138, 156, 178
4,  72,  66,  96,  90, 120, 158, 138, 190, 192, 186, 216, 254, 306, 300, 324
2,  48,  78,  60,  90, 124,  84, 140, 126, 108, 138, 172, 184, 144, 200, 186
4, 120, 102, 144, 194, 150, 226, 216, 198, 240, 290, 314, 270, 346, 336, 318
2,  72, 114, 160,  96, 176, 150, 120, 162, 208, 220, 156, 236, 210, 180, 260
4, 168, 230, 162, 262, 240, 210, 264, 326, 350, 282, 382, 360, 330, 430, 408
6, 312, 232, 360, 338, 304, 374, 456, 492, 412, 540, 518, 484, 612, 590, 672
2, 120, 248, 198, 144, 210, 280, 292, 180, 308, 258, 204, 332, 282, 352, 426
6, 408, 370, 320, 406, 504, 540, 428, 588, 550, 500, 660, 622, 720, 830, 730
4, 312, 246, 336, 434, 458, 318, 490, 432, 366, 538, 480, 578, 684, 552, 486
2, 168, 258, 352, 364, 204, 380, 306, 228, 404, 330, 424, 522, 366, 288, 378
4, 360, 470, 494, 330, 526, 456, 378, 574, 504, 614, 732, 576, 498, 600, 522
6, 600, 636, 460, 684, 614, 532, 756, 686, 816, 958, 794, 712, 830, 748, 866
...
		

Crossrefs

Transpose: A257514.
Row 1: A016813.
Column 1: A001223, Column 2: A069482, Column 3: A109805, Column 4: A226502 (apart from the first term).

Programs

Formula

A(row,col) = A083221(row+1,col) - A083221(row,col).
Showing 1-7 of 7 results.