cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168415 a(n) = 2^n + 7.

Original entry on oeis.org

8, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031, 2055, 4103, 8199, 16391, 32775, 65543, 131079, 262151, 524295, 1048583, 2097159, 4194311, 8388615, 16777223, 33554439, 67108871, 134217735, 268435463, 536870919, 1073741831, 2147483655
Offset: 0

Views

Author

Vincenzo Librandi, Dec 01 2009

Keywords

Comments

a(n) is prime <=> a(n) is in A104066 <=> n is in A057195 <=> 2^(n-1)*a(n) = A257272(n) is in A125247. - M. F. Hasler, Apr 27 2015

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - 7, n > 1.
G.f.: (8 - 15*x)/((2*x - 1)*(x - 1)). - R. J. Mathar, Jul 10 2011
a(n) = A000079(n) + 7. - Omar E. Pol, Sep 20 2011
E.g.f.: exp(2*x) + 7*exp(x). - G. C. Greubel, Jul 22 2016
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. - Elmo R. Oliveira, Nov 11 2023

A257273 a(n) = 2^(n-1)*(2^n+3).

Original entry on oeis.org

2, 5, 14, 44, 152, 560, 2144, 8384, 33152, 131840, 525824, 2100224, 8394752, 33566720, 134242304, 536920064, 2147581952, 8590131200, 34360131584, 137439739904, 549757386752, 2199026401280, 8796099313664, 35184384671744, 140737513521152, 562950003752960, 2251799914348544, 9007199456067584
Offset: 0

Views

Author

M. F. Hasler, Apr 27 2015

Keywords

Comments

a(n) is in A125246 <=> n is in A057732 <=> A062709(n) is in A057733.
These are also the row sum of the triangle A146769: For n>=1, a(n-1) is the sum of row n of A146769.

Crossrefs

Programs

  • Magma
    [2^(n-1)*(2^n+3): n in [0..35]]; // Vincenzo Librandi, Apr 27 2015
    
  • Mathematica
    Table[2^(n - 1) (2^n + 3), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
    CoefficientList[Series[(2 - 7 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
    LinearRecurrence[{6,-8},{2,5},30] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    a(n)=2^(n-1)*(2^n+3)
    
  • PARI
    Vec((2-7*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015

Formula

G.f.: (2-7*x)/((1-4*x)*(1-2*x)). - Vincenzo Librandi, Apr 27 2015
a(n) = 6*a(n-1)-8*a(n-2). - Colin Barker, Apr 27 2015

A181444 G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(2^n*x)^2 )^n/n!.

Original entry on oeis.org

1, 1, 4, 60, 2480, 242296, 53763904, 28363717952, 41396018951936, 215328934357721024, 4740698193856769942528, 430771050114778618253200384, 151994706469390446336698323709952
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 60*x^3 + 2480*x^4 + 242296*x^5 +...
A(x) = 1 + x*[1 + log(A(2x)^2) + log(A(4x)^2)^2/2! + log(A(8x)^2)^3/3! + log(A(16x)^2)^4/4! + log(A(32x)^2)^5/5! +...].
Coefficients in the 2^n-th powers of A(x) begin:
A^(2^0)=[1, 1, 4, 60, 2480, 242296, 53763904, 28363717952,...];
A^(2^1)=[(1), 2, 9, 128, 5096, 490032, 108035840, 56837199680,...];
A^(2^2)=[1,(4), 22, 292, 10785, 1002752, 218139920, 114116667872,...];
A^(2^3)=[1, 8,(60), 760, 24390, 2104632, 444861660, 230028874632,...];
A^(2^4)=[1, 16, 184,(2480), 64540, 4690704, 926901832,...];
A^(2^5)=[1, 32, 624, 10848,(242296), 12359328, 2033807312,...];
A^(2^6)=[1, 64, 2272, 61632, 1568240,(53763904), 5278676128,...];
A^(2^7)=[1, 128, 8640, 414080, 16187360, 588318336,(28363717952),...];
A^(2^8)=[1, 256, 33664, 3040000, 213028800, 12475903232, 658516757120,(41396018951936),...]; ...
where the diagonal terms in parenthesis form this sequence (shift left).
The third column of this table is given by A257272 (observation by _Bruno Berselli_). - _M. F. Hasler_, Apr 27 2015
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+sum(m=1,n-1,a(m)*x^m));polcoeff(1+x*sum(m=0,n,log(subst(A^2,x,2^m*x)+x*O(x^n))^m/m!),n)}

Formula

a(n+1) = [x^n] A(x)^(2^(n+1)) for n>=0, with a(0)=1, where A(x) = Sum_{n>=0} a(n)*x^n.
Showing 1-3 of 3 results.