cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A057732 Numbers k such that 2^k + 3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784, 1110, 1704, 2008, 2139, 2191, 2367, 2370, 4002, 4060, 4062, 4552, 5547, 8739, 17187, 17220, 17934, 20724, 22732, 25927, 31854, 33028, 35754, 38244, 39796, 40347, 55456, 58312, 122550, 205962, 235326, 363120, 479844, 685578, 742452, 1213815, 1434400, 1594947, 1875552, 1940812, 2205444
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
A number k is in this sequence iff A062709(k) is in A057733; this is the case iff A257273(k) is in A125246. - M. F. Hasler, Apr 27 2015

Examples

			For k = 6, 2^6 + 3 = 67 is prime.
For k = 28, 2^28 + 3 = 268435459 is prime.
		

References

  • Mike Oakes, posting to primenumbers(AT)yahoogroups.com on Jul 08 2001

Crossrefs

Cf. A019434 (primes 2^k+1), this sequence (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+3)]; // Vincenzo Librandi, Apr 27 2015
  • Mathematica
    Select[Range[10000], PrimeQ[2^# + 3] &] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    for(n=1, 2200, if(isprime(2^n+3), print1(n, ", ")));
    
  • PARI
    for (n=1, 2, if (isprime(2^n+3), print1(n, ", "))); for(n=3, 100000, N=2^n+3 ; S=(N-5)/2 ; x=S ; for(j=1, n-1, x=Mod(x^2-2, N)) ; if(x==S , print1(n, ", "))) \\ produces terms corresponding to probable primes, see formula; Tony Reix, Aug 27 2015
    

Formula

Here is an LLT-like algorithm, using a cycle of the digraph x^2-2 modulo N, that finds terms of this sequence generating a PRP (PRobable Prime) of A057733 numbers: N=2^k+3; S0=(N-5)/2; s(0)=S0; s(i+1)=s(i)^2-2 modulo N; if s(k-1) == S0 then N is prime. - Tony Reix, Aug 27 2015

Extensions

More terms from Jason Earls, Jul 18 2001 and Mike Oakes, Jul 28 2001
a(47)-a(50) from Donovan Johnson 2006, verified by Paul Bourdelais, Mar 22 2012
a(51) is a probable prime based on trial factoring to 1E9 and PRP testing base 3,5,7 (PFGW v3.3.1). Discovered by Paul Bourdelais, Apr 09 2012
a(52)-a(54) from Paul Bourdelais, Jun 18 2019
a(55) from Paul Bourdelais, Jul 16 2019
a(56) from Paul Bourdelais, Apr 22 2020
a(57) from Paul Bourdelais, Jun 12 2020
a(58) from Paul Bourdelais, Aug 04 2020

A257272 a(n) = 2^(n-1)*(2^n+7).

Original entry on oeis.org

4, 9, 22, 60, 184, 624, 2272, 8640, 33664, 132864, 527872, 2104320, 8402944, 33583104, 134275072, 536985600, 2147713024, 8590393344, 34360655872, 137440788480, 549759483904, 2199030595584, 8796107702272, 35184401448960, 140737547075584, 562950070861824, 2251800048566272, 9007199724503040
Offset: 0

Views

Author

M. F. Hasler, Apr 27 2015

Keywords

Comments

For n in A057195, a(n) is of deficiency 8, i.e., in A125247.
Also, the third column (k=2) of the table given in A181444.

Crossrefs

Programs

  • Magma
    [2^(n-1)*(2^n+7): n in [0..25]]; // Vincenzo Librandi, Apr 27 2015
    
  • Mathematica
    Table[2^(n - 1) (2^n + 7), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
    CoefficientList[Series[(4 - 15 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    a(n)=2^(n-1)*(2^n+7)
    
  • PARI
    Vec((4-15*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015

Formula

a(n) = 2^(n-1)*A168415(n).
n in A057195 <=> A168415(n) in A104066 <=> a(n) in A125247.
G.f.: (4-15*x)/((1-4*x)*(1-2*x)). - Vincenzo Librandi, Apr 27 2015

A370933 Number of pairs of antipodal vertices in the level n>1 Sierpiński triangle graph.

Original entry on oeis.org

6, 15, 42, 132, 456, 1680, 6432, 25152, 99456, 395520, 1577472, 6300672, 25184256, 100700160, 402726912, 1610760192, 6442745856, 25770393600, 103080394752, 412319219712, 1649272160256, 6597079203840, 26388297940992, 105553154015232, 422212540563456, 1688850011258880, 6755399743045632
Offset: 2

Views

Author

Allan Bickle, Aug 07 2024

Keywords

Comments

A level 1 Sierpiński triangle graph is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles.
Antipodal vertices are a pair of vertices at maximum distance in a graph. The diameter of the level n Sierpiński triangle graph is 2^(n-1).

Examples

			3 example graphs:                        o
                                        / \
                                       o---o
                                      / \ / \
                        o            o---o---o
                       / \          / \     / \
             o        o---o        o---o   o---o
            / \      / \ / \      / \ / \ / \ / \
           o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
For S_2, there are 3 pairs of corners and 3 pairs of a corner and a middle vertex, so a(2) = 6.
		

Crossrefs

Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959, A298202 (Sierpiński triangle graphs).
Cf. A375256 (antipodal pairs in Hanoi graphs).

Programs

  • Mathematica
    A370933[n_] := 3*2^(n - 3)*(2^(n - 2) + 3);
    Array[A370933, 30, 2] (* or *)
    LinearRecurrence[{6, -8}, {6, 15}, 30] (* Paolo Xausa, Sep 23 2024 *)
  • PARI
    a(n) = 3*2^(n-3)*(2^(n-2)+3); \\ Michel Marcus, Aug 08 2024

Formula

a(n) = 3*2^(n-3)*(2^(n-2)+3).
a(n) = 3*A257273(n-2).
a(n) = A375256(n-1) + 3.

Extensions

More terms from Michel Marcus, Aug 08 2024

A146769 Coefficients of polynomial P(n) by rows, with P(n) = (x+1)^n + 2^(n-3)*((x+1)^n - x^n - 1) for n > 0 and P(0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 12, 18, 12, 1, 1, 25, 50, 50, 25, 1, 1, 54, 135, 180, 135, 54, 1, 1, 119, 357, 595, 595, 357, 119, 1, 1, 264, 924, 1848, 2310, 1848, 924, 264, 1, 1, 585, 2340, 5460, 8190, 8190, 5460, 2340, 585, 1, 1, 1290, 5805, 15480, 27090, 32508
Offset: 0

Views

Author

Roger L. Bagula, Nov 02 2008

Keywords

Comments

Original name: A new symmetrical polynomial form to give a triangle sequence: p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
Row sums are:{1, 2, 5, 14, 44, 152, 560, 2144, 8384, 33152, 131840}.
Row sums are 1 and (6*2^k + 4^k)/8 for k >= 1 (see A257273). - Robert Israel, Apr 29 2015

Examples

			1;
1,    1;
1,    3,    1;
1,    6,    6,     1;
1,   12,   18,    12,     1;
1,   25,   50,    50,    25,     1;
1,   54,  135,   180,   135,    54,     1;
1,  119,  357,   595,   595,   357,   119,     1;
1,  264,  924,  1848,  2310,  1848,   924,   264,    1;
1,  585, 2340,  5460,  8190,  8190,  5460,  2340,  585,    1;
1, 1290, 5805, 15480, 27090, 32508, 27090, 15480, 5805, 1290, 1;
...
		

Crossrefs

Cf. A257273 (row sums).

Programs

  • Magma
    /* As triangle: */ [1]; for n in [1..10] do; R := PolynomialAlgebra(RationalField(), n); Coefficients((x+1)^n + 2^(n-3)*((x+1)^n - x^n - 1)); end for; // Bruno Berselli, Apr 30 2015
  • Mathematica
    p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]

Formula

G.f.: y/(4*(2*y-1)) - 1/(x*y+y-1) - 1/(8*(2*x*y+2*y-1)) + 1/(8*(2*x*y-1)). - Robert Israel, Apr 29 2015

Extensions

New name from Charles R Greathouse IV, Apr 29 2015

A290075 Number of monomials in c(n) where c(1) = x, c(2) = y, c(n+2) = c(n+1) + c(n)^2.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 44, 80, 152, 288, 560, 1088, 2144, 4224, 8384, 16640, 33152, 66048, 131840, 263168, 525824, 1050624, 2100224, 4198400, 8394752, 16785408, 33566720, 67125248, 134242304, 268468224, 536920064, 1073807360, 2147581952, 4295098368
Offset: 1

Views

Author

Michael Somos, Jul 19 2017

Keywords

Examples

			G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 14*x^7 + 24*x^8 + 44*x^9 + ...
c(3) = x^2 + y so a(3) = 2, c(4) = x^2 + (y + y^2) so a(4) = 3, c(5) = x^4 + x^2(2*y) + (y + 2*y^2) so a(5) = 5.
		

Crossrefs

Programs

  • Mathematica
    nn:=36; nn:=10; Rest[CoefficientList[Series[(x - x^2 - 2*x^3 + x^4 - x^5) / ((1 - 2*x) * (1 - 2*x^2)),{x, 0, nn}], x]] (* Georg Fischer, May 10 2020 *)
  • PARI
    {a(n) = if( n<3, n>0, my(e=n%2, m=2^((n+e)/2-2)); m * (m+2+e) / (1+e))};
    
  • PARI
    Vec(x*(1 - x - 2*x^2 + x^3 - x^4) / ((1 - 2*x)*(1 - 2*x^2)) + O(x^50)) \\ Colin Barker, Jul 22 2017

Formula

G.f.: (x - x^2 - 2*x^3 + x^4 - x^5) / ((1 - 2*x) * (1 - 2*x^2)).
0 = 4*a(n) - 2*a(n+1) - 2*a(n+2) + 1*a(n+3) for n>=3.
A088966(n) = a(2*n+2). A257273(n) = a(2*n+3). A211525(n) = a(n+8).
From Colin Barker, Jul 22 2017: (Start)
a(n) = 2^(n/2-1) + 2^(n-4) for n>2 and even.
a(n) = 3*2^((n-5)/2) + 2^(n-4) for n>2 and odd.
(End)
Given the sequence c(n, x, y), then the coefficients of: (1) c(n+2, sqrt(t), 0), (2) c(n+1, 0, t), and (3) c(n, t, t), each form the triangular sequence A103484. - Michael Somos, Jul 24 2017
Showing 1-5 of 5 results.