A057732
Numbers k such that 2^k + 3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784, 1110, 1704, 2008, 2139, 2191, 2367, 2370, 4002, 4060, 4062, 4552, 5547, 8739, 17187, 17220, 17934, 20724, 22732, 25927, 31854, 33028, 35754, 38244, 39796, 40347, 55456, 58312, 122550, 205962, 235326, 363120, 479844, 685578, 742452, 1213815, 1434400, 1594947, 1875552, 1940812, 2205444
Offset: 1
For k = 6, 2^6 + 3 = 67 is prime.
For k = 28, 2^28 + 3 = 268435459 is prime.
- Mike Oakes, posting to primenumbers(AT)yahoogroups.com on Jul 08 2001
Cf.
A019434 (primes 2^k+1), this sequence (2^k+3),
A059242 (2^k+5),
A057195 (2^k+7),
A057196(2^k+9),
A102633 (2^k+11),
A102634 (2^k+13),
A057197 (2^k+15),
A057200 (2^k+17),
A057221 (2^k+19),
A057201 (2^k+21),
A057203 (2^k+23).
-
[n: n in [0..1000] | IsPrime(2^n+3)]; // Vincenzo Librandi, Apr 27 2015
-
Select[Range[10000], PrimeQ[2^# + 3] &] (* Vincenzo Librandi, Apr 27 2015 *)
-
for(n=1, 2200, if(isprime(2^n+3), print1(n, ", ")));
-
for (n=1, 2, if (isprime(2^n+3), print1(n, ", "))); for(n=3, 100000, N=2^n+3 ; S=(N-5)/2 ; x=S ; for(j=1, n-1, x=Mod(x^2-2, N)) ; if(x==S , print1(n, ", "))) \\ produces terms corresponding to probable primes, see formula; Tony Reix, Aug 27 2015
a(51) is a probable prime based on trial factoring to 1E9 and PRP testing base 3,5,7 (PFGW v3.3.1). Discovered by
Paul Bourdelais, Apr 09 2012
A257272
a(n) = 2^(n-1)*(2^n+7).
Original entry on oeis.org
4, 9, 22, 60, 184, 624, 2272, 8640, 33664, 132864, 527872, 2104320, 8402944, 33583104, 134275072, 536985600, 2147713024, 8590393344, 34360655872, 137440788480, 549759483904, 2199030595584, 8796107702272, 35184401448960, 140737547075584, 562950070861824, 2251800048566272, 9007199724503040
Offset: 0
-
[2^(n-1)*(2^n+7): n in [0..25]]; // Vincenzo Librandi, Apr 27 2015
-
Table[2^(n - 1) (2^n + 7), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
CoefficientList[Series[(4 - 15 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
-
a(n)=2^(n-1)*(2^n+7)
-
Vec((4-15*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015
A370933
Number of pairs of antipodal vertices in the level n>1 Sierpiński triangle graph.
Original entry on oeis.org
6, 15, 42, 132, 456, 1680, 6432, 25152, 99456, 395520, 1577472, 6300672, 25184256, 100700160, 402726912, 1610760192, 6442745856, 25770393600, 103080394752, 412319219712, 1649272160256, 6597079203840, 26388297940992, 105553154015232, 422212540563456, 1688850011258880, 6755399743045632
Offset: 2
3 example graphs: o
/ \
o---o
/ \ / \
o o---o---o
/ \ / \ / \
o o---o o---o o---o
/ \ / \ / \ / \ / \ / \ / \
o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
For S_2, there are 3 pairs of corners and 3 pairs of a corner and a middle vertex, so a(2) = 6.
- Paolo Xausa, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph
Cf.
A375256 (antipodal pairs in Hanoi graphs).
-
A370933[n_] := 3*2^(n - 3)*(2^(n - 2) + 3);
Array[A370933, 30, 2] (* or *)
LinearRecurrence[{6, -8}, {6, 15}, 30] (* Paolo Xausa, Sep 23 2024 *)
-
a(n) = 3*2^(n-3)*(2^(n-2)+3); \\ Michel Marcus, Aug 08 2024
A146769
Coefficients of polynomial P(n) by rows, with P(n) = (x+1)^n + 2^(n-3)*((x+1)^n - x^n - 1) for n > 0 and P(0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 12, 18, 12, 1, 1, 25, 50, 50, 25, 1, 1, 54, 135, 180, 135, 54, 1, 1, 119, 357, 595, 595, 357, 119, 1, 1, 264, 924, 1848, 2310, 1848, 924, 264, 1, 1, 585, 2340, 5460, 8190, 8190, 5460, 2340, 585, 1, 1, 1290, 5805, 15480, 27090, 32508
Offset: 0
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 12, 18, 12, 1;
1, 25, 50, 50, 25, 1;
1, 54, 135, 180, 135, 54, 1;
1, 119, 357, 595, 595, 357, 119, 1;
1, 264, 924, 1848, 2310, 1848, 924, 264, 1;
1, 585, 2340, 5460, 8190, 8190, 5460, 2340, 585, 1;
1, 1290, 5805, 15480, 27090, 32508, 27090, 15480, 5805, 1290, 1;
...
-
/* As triangle: */ [1]; for n in [1..10] do; R := PolynomialAlgebra(RationalField(), n); Coefficients((x+1)^n + 2^(n-3)*((x+1)^n - x^n - 1)); end for; // Bruno Berselli, Apr 30 2015
-
p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[Binomial[n, m]*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
A290075
Number of monomials in c(n) where c(1) = x, c(2) = y, c(n+2) = c(n+1) + c(n)^2.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 14, 24, 44, 80, 152, 288, 560, 1088, 2144, 4224, 8384, 16640, 33152, 66048, 131840, 263168, 525824, 1050624, 2100224, 4198400, 8394752, 16785408, 33566720, 67125248, 134242304, 268468224, 536920064, 1073807360, 2147581952, 4295098368
Offset: 1
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 14*x^7 + 24*x^8 + 44*x^9 + ...
c(3) = x^2 + y so a(3) = 2, c(4) = x^2 + (y + y^2) so a(4) = 3, c(5) = x^4 + x^2(2*y) + (y + 2*y^2) so a(5) = 5.
-
nn:=36; nn:=10; Rest[CoefficientList[Series[(x - x^2 - 2*x^3 + x^4 - x^5) / ((1 - 2*x) * (1 - 2*x^2)),{x, 0, nn}], x]] (* Georg Fischer, May 10 2020 *)
-
{a(n) = if( n<3, n>0, my(e=n%2, m=2^((n+e)/2-2)); m * (m+2+e) / (1+e))};
-
Vec(x*(1 - x - 2*x^2 + x^3 - x^4) / ((1 - 2*x)*(1 - 2*x^2)) + O(x^50)) \\ Colin Barker, Jul 22 2017
Showing 1-5 of 5 results.
Comments