cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A001122 Primes with primitive root 2.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797
Offset: 1

Views

Author

Keywords

Comments

Artin conjectured that this sequence is infinite.
Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
It seems that this sequence consists of A050229 \ {1,2}.
Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer.
Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010
These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012]
Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013
Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015
From Jianing Song, Apr 27 2019: (Start)
All terms are congruent to 3 or 5 modulo 8. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 8)};
Q(N) = # {p prime, p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,3) + Pi(N,5)), where C = A005596 is Artin's constant.
Conjecture: if we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 8), p in this sequence},
then we have:
Q(N,3) ~ (1/2)*Q(N) ~ C*Pi(N,3);
Q(N,5) ~ (1/2)*Q(N) ~ C*Pi(N,5). (End)
Conjecture: for a prime p > 5, p has primitive root 2 iff p == +-3 (mod 8) divides 2^k + 3 for some k < p - 1 and divides 2^m + 5 for some m < p - 1. It seems that all primes of the form 2^k + 3 for k <> 2 (A057732) have primitive root 2. - Thomas Ordowski, Nov 27 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.
  • Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1).
Cf. A216838 (Odd primes for which 2 is not a primitive root).

Programs

  • Mathematica
    Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *)
    pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p,", "))); \\ [corrected by Michel Marcus, Oct 08 2014]
    
  • Python
    from itertools import islice
    from sympy import nextprime, is_primitive_root
    def A001122_gen(): # generator of terms
        p = 2
        while (p:=nextprime(p)):
            if is_primitive_root(2,p):
                yield p
    A001122_list = list(islice(A001122_gen(),30)) # Chai Wah Wu, Feb 13 2023

Formula

Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013
For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017

A050414 Numbers k such that 2^k - 3 is prime.

Original entry on oeis.org

3, 4, 5, 6, 9, 10, 12, 14, 20, 22, 24, 29, 94, 116, 122, 150, 174, 213, 221, 233, 266, 336, 452, 545, 689, 694, 850, 1736, 2321, 3237, 3954, 5630, 6756, 8770, 10572, 14114, 14400, 16460, 16680, 20757, 26350, 30041, 34452, 36552, 42689, 44629, 50474, 66422, 69337, 116926, 119324, 123297, 189110, 241004, 247165, 284133, 354946, 394034, 702194, 750740, 840797, 1126380, 1215889, 1347744, 1762004, 2086750
Offset: 1

Views

Author

Jud McCranie, Dec 22 1999

Keywords

Comments

With 65 known primes corresponding to k < 1762005, these primes appear to be more common than Mersenne primes. Of course at this time, the larger terms correspond only to probable primes. - Paul Bourdelais, Feb 04 2012
The numbers 2^k-3 and 2^k-1 are both primes for k = 3, 5, ? The lesser number 2^p-3 is prime for primes p = 3, 5, 29, 233, 42689, 69337, ... (see A283266). - Thomas Ordowski, Sep 18 2015
The terms a(43)-a(49) were found by Paul Underwood, a(50)-a(51) found by M. Frind and P. Underwood, a(52) found by Gary Barnes, a(53)-a(58) found by M. Frind and P. Underwood, and a(59)-a(66) found by Paul Bourdelais (see link Henri Lifchitz and Renaud Lifchitz). - Elmo R. Oliveira, Dec 02 2023

Examples

			k = 22, 2^22 - 3 = 4194301 is prime.
k = 24, 2^24 - 3 = 16777213 is prime.
		

Crossrefs

Cf. A045768, A050415, A057732 (numbers k such that 2^k + 3 is prime).
For prime terms see A283266.
Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n -3 ], Print[n]], { n, 1, 15000 }]
  • PARI
    for(n=2, 10^5, if(ispseudoprime(2^n-3), print1(n, ", "))) \\ Felix Fröhlich, Jun 23 2014

Extensions

More terms from Robert G. Wilson v, Sep 15 2000
More terms from Andrey V. Kulsha, Feb 11 2001
a(40) verified with 20 iterations of Miller-Rabin test, from Dmitry Kamenetsky, Jul 12 2008
a(41) a new PRP term, from Serge Batalov, Oct 20 2008
Corrected and extended by including two smaller (apparently known) PRP and 16 larger terms from PRP Top Records of this form, all discovered by M. Frind & P. Underwood, Gary Barnes, Oct 20 2008
a(59)-a(60) discovered by Paul Bourdelais, Mar 26 2012
a(61)-a(63) discovered by Paul Bourdelais, Jun 18 2019
a(64) discovered by Paul Bourdelais, Jul 16 2019
a(65) discovered by Paul Bourdelais, Apr 20 2020
a(66) discovered by Paul Bourdelais, May 28 2020

A057733 Primes of the form 2^k + 3.

Original entry on oeis.org

5, 7, 11, 19, 67, 131, 4099, 32771, 65539, 262147, 268435459, 1073741827, 36028797018963971, 147573952589676412931, 19342813113834066795298819, 431359146674410236714672241392314090778194310760649159697657763987459
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 2^n+3 ] // Vincenzo Librandi, Aug 07 2010
    
  • Maple
    for n from 1 to 2000 do `if`(isprime(2^n + 3), 2^n + 3, NULL) od;
    # alternative:
    select(isprime, [seq(2^n+3,n=1..2000)]); # Robert Israel, Dec 28 2015
  • Mathematica
    Select[Table[2^n + 3, {n, 230}], PrimeQ] (* Jayanta Basu, May 23 2013 *)
  • PARI
    for(n=1,99,if(ispseudoprime(t=2^n+3),print1(t", "))) \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = 2^A057732(n) + 3. - Elmo R. Oliveira, Nov 08 2023

Extensions

More terms from Francois Jooste (pin(AT)myway.com), Mar 17 2003

A057196 Numbers k such that 2^k + 9 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 18, 23, 30, 37, 47, 57, 66, 82, 95, 119, 175, 263, 295, 317, 319, 327, 670, 697, 886, 1342, 1717, 1855, 2394, 2710, 3229, 3253, 3749, 4375, 4494, 4557, 5278, 5567, 9327, 10129, 12727, 13615, 14893, 16473, 23639, 40053, 44399, 50335, 80949
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

Some of the larger terms are only probable primes.
For these numbers k, 2^(k-1)*(2^k+9) has deficiency 10 (see A101223). - M. F. Hasler, Jul 18 2016
The terms a(48)-a(51) were found by Mike Oakes, a(52) found by Gary Barnes, and a(53-56) found by Lelio R Paula (see link Henri Lifchitz and Renaud Lifchitz). - Elmo R. Oliveira, Dec 01 2023

Examples

			For k = 10, 2^10 + 9 = 1033 is prime.
For k = 30, 2^30 + 9 = 1073741833 is prime.
		

Crossrefs

Cf. A094076, A101223, A104070 (primes of the form 2^k+9). [Klaus Brockhaus, Mar 14 2009]
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), this sequence (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23). [M. F. Hasler, Jul 18 2016]

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n +9 ], Print[n]], { n, 1, 15000 }]
  • PARI
    for(n=1, oo, ispseudoprime(2^n+9)&&print1(n", ")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(48)-a(51) from Mike Oakes, Aug 17 2001
Edited by T. D. Noe, Oct 30 2008

A059242 Numbers k such that 2^k + 5 is prime.

Original entry on oeis.org

1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341, 16541, 34001, 34763, 42167, 193965, 282203
Offset: 1

Views

Author

Tony Davie (ad(AT)dcs.st-and.ac.uk), Jan 21 2001

Keywords

Comments

The subsequence of primes starts 3, 5, 11, 47, 53, 191, ... - Vincenzo Librandi, Aug 07 2010
For k in this sequence, 2^(k-1)*(2^k+5) is in A141548: numbers of deficiency 6. - M. F. Hasler, Apr 23 2015
a(18) > 5*10^5. - Robert Price, Aug 23 2015
a(18) > 6*10^5. - Tyler NeSmith, Jan 18 2021
All terms are odd - Elmo R. Oliveira, Dec 01 2023

Examples

			2^3 + 5 = 13 is prime, but 2^4 + 5 = 21 is not.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), this sequence (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

Extensions

More terms from Santi Spadaro, Oct 04 2002
a(12) from Hans Havermann, Oct 07 2002
a(13)-a(15) from Charles R Greathouse IV, Oct 07 2011
a(16)-a(17) from Robert Price, Dec 06 2013

A057197 Numbers k such that 2^k + 15 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22, 23, 26, 30, 32, 40, 42, 46, 61, 72, 76, 155, 180, 198, 203, 310, 328, 342, 508, 510, 515, 546, 808, 1563, 2772, 3882, 3940, 4840, 7518, 11118, 11552, 11733, 12738, 12858, 17421, 44122, 64660, 163560, 172455, 180496, 325866, 481840, 1009168
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

a(55) > 5*10^5. - Robert Price, Sep 14 2015
For these numbers k, 2^(k-1)*(2^k+15) has deficiency 16 (see A125248). - M. F. Hasler, Jul 18 2016

Examples

			For k = 5, 2^5 + 15 = 47 is prime.
For k = 15, 2^15 + 15 = 32783 is prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), this sequence (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(2^n+15)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 15 ], Print[n]], { n, 1, 12422 }]
    Select[Range[15000], PrimeQ[2^# + 15] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    for(n=1,oo,ispseudoprime(2^n+15)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(45)-a(53) from Robert Price, Dec 06 2013
a(54) from Robert Price, Sep 14 2015
a(55) from Stefano Morozzi, added by Elmo R. Oliveira, Dec 11 2023

A057200 Numbers k such that 2^k + 17 is prime.

Original entry on oeis.org

1, 13, 21, 33, 81, 129, 285, 297, 769, 3381, 4441, 7065, 77121, 133437, 184189, 191745, 1279921
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(17) > 5*10^5. - Robert Price, Oct 05 2015
For numbers k in this sequence, 2^(k-1)*(2^k+17) has deficiency 18 (see A223608). - M. F. Hasler, Jul 18 2016
All terms are odd. - Elmo R. Oliveira, Nov 19 2023

Crossrefs

Cf. A223608.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), this sequence (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+17)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 17 ], Print[ n ]], {n, 0, 11811} ]
    Select[Range[10000], PrimeQ[2^# + 17] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    is(n)=isprime(2^n+17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(13)-a(16) from Robert Price, Aug 24 2015
Edited by M. F. Hasler, Jul 18 2016
a(17) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 19 2023

A102633 Numbers k such that 2^k + 11 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 23, 29, 31, 55, 71, 77, 297, 573, 1301, 1555, 1661, 4937, 5579, 6191, 6847, 6959, 19985, 26285, 47093, 74167, 149039, 175137, 210545, 240295, 306153, 326585, 345547
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

a(34) > 5*10^5. - Robert Price, Aug 26 2015
For numbers k in this sequence, 2^(k-1)*(2^k+11) has deficiency 12 (see A141549). All terms are odd since 4^n+11 == 1+2 == 0 (mod 3). - M. F. Hasler, Jul 18 2016

Examples

			k = 1: 2^1 + 11 = 13 is prime.
k = 3: 2^3 + 11 = 19 is prime.
k = 2: 2^2 + 11 = 15 is not prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), this sequence (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[ If[ PrimeQ[2^n + 11], Print[n]], {n, 15250}] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    for(n=1,9e9,ispseudoprime(2^n+11)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(18)-a(22) from Robert G. Wilson v, Jan 21 2005
a(23)-a(33) from Robert Price, Dec 06 2013
Edited by M. F. Hasler, Jul 18 2016

A102634 Numbers k such that 2^k + 13 is prime.

Original entry on oeis.org

2, 4, 8, 20, 38, 64, 80, 292, 1132, 4108, 19934, 125278, 175628, 282184
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

If k is odd, then 2^k + 13 is divisible by 3. - Robert G. Wilson v, Jan 24 2005
a(15) > 5*10^5. - Robert Price, Aug 15 2015
For k in this sequence, the number 2^(k-1)*(2^k+13) has deficiency 14, cf. A141550. - M. F. Hasler, Jul 18 2016

Examples

			2^2+13 = 17 is prime.
2^4+13 = 29 is prime.
2^3+13 = 21 is not prime.
		

Crossrefs

Cf. A019434 (2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (this), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[m = n; If[PrimeQ[2^n + 13], Print[n]], {n, 2, 19125, 2}] (* Robert G. Wilson v, Jan 24 2005 *)
  • PARI
    first(m)=my(v=vector(m),r=1);for(i=1,m,while(!isprime(2^r + 13),r++);v[i]=r;r++);v; \\ Anders Hellström, Aug 15 2015

Formula

a(n) = 2*A253772(n). - Elmo R. Oliveira, Nov 12 2023

Extensions

a(10) from Robert G. Wilson v, Jan 24 2005
a(11)-a(14) from Robert Price, Aug 15 2015

A057201 Numbers k such that 2^k + 21 is prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 15, 16, 19, 44, 48, 51, 52, 61, 163, 196, 456, 492, 911, 997, 1616, 1631, 1647, 1803, 1899, 3112, 3584, 3956, 6848, 7023, 9535, 16657, 27035, 33843, 36551, 38859, 81485, 107287, 131383, 139476, 158497, 210061, 216752, 339168, 341355, 376731, 1173095
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(48) > 5*10^5. - Robert Price, Sep 17 2015

Examples

			k = 15, 2^15 + 21 = 32789 is prime.
k = 16, 2^16 + 21 = 65557 is prime.
		

Crossrefs

Cf. A094076.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), this sequence (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+21)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 21 ], Print[ n ] ], {n, 1, 4000} ]
    Select[Range[10000], PrimeQ[2^# + 21] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    is(n)=isprime(2^n+21) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(30)-a(47) from Robert Price, Dec 06 2013
a(48) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 25 2023
Showing 1-10 of 43 results. Next