cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A057732 Numbers k such that 2^k + 3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784, 1110, 1704, 2008, 2139, 2191, 2367, 2370, 4002, 4060, 4062, 4552, 5547, 8739, 17187, 17220, 17934, 20724, 22732, 25927, 31854, 33028, 35754, 38244, 39796, 40347, 55456, 58312, 122550, 205962, 235326, 363120, 479844, 685578, 742452, 1213815, 1434400, 1594947, 1875552, 1940812, 2205444
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
A number k is in this sequence iff A062709(k) is in A057733; this is the case iff A257273(k) is in A125246. - M. F. Hasler, Apr 27 2015

Examples

			For k = 6, 2^6 + 3 = 67 is prime.
For k = 28, 2^28 + 3 = 268435459 is prime.
		

References

  • Mike Oakes, posting to primenumbers(AT)yahoogroups.com on Jul 08 2001

Crossrefs

Cf. A019434 (primes 2^k+1), this sequence (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+3)]; // Vincenzo Librandi, Apr 27 2015
  • Mathematica
    Select[Range[10000], PrimeQ[2^# + 3] &] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    for(n=1, 2200, if(isprime(2^n+3), print1(n, ", ")));
    
  • PARI
    for (n=1, 2, if (isprime(2^n+3), print1(n, ", "))); for(n=3, 100000, N=2^n+3 ; S=(N-5)/2 ; x=S ; for(j=1, n-1, x=Mod(x^2-2, N)) ; if(x==S , print1(n, ", "))) \\ produces terms corresponding to probable primes, see formula; Tony Reix, Aug 27 2015
    

Formula

Here is an LLT-like algorithm, using a cycle of the digraph x^2-2 modulo N, that finds terms of this sequence generating a PRP (PRobable Prime) of A057733 numbers: N=2^k+3; S0=(N-5)/2; s(0)=S0; s(i+1)=s(i)^2-2 modulo N; if s(k-1) == S0 then N is prime. - Tony Reix, Aug 27 2015

Extensions

More terms from Jason Earls, Jul 18 2001 and Mike Oakes, Jul 28 2001
a(47)-a(50) from Donovan Johnson 2006, verified by Paul Bourdelais, Mar 22 2012
a(51) is a probable prime based on trial factoring to 1E9 and PRP testing base 3,5,7 (PFGW v3.3.1). Discovered by Paul Bourdelais, Apr 09 2012
a(52)-a(54) from Paul Bourdelais, Jun 18 2019
a(55) from Paul Bourdelais, Jul 16 2019
a(56) from Paul Bourdelais, Apr 22 2020
a(57) from Paul Bourdelais, Jun 12 2020
a(58) from Paul Bourdelais, Aug 04 2020

A059242 Numbers k such that 2^k + 5 is prime.

Original entry on oeis.org

1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341, 16541, 34001, 34763, 42167, 193965, 282203
Offset: 1

Views

Author

Tony Davie (ad(AT)dcs.st-and.ac.uk), Jan 21 2001

Keywords

Comments

The subsequence of primes starts 3, 5, 11, 47, 53, 191, ... - Vincenzo Librandi, Aug 07 2010
For k in this sequence, 2^(k-1)*(2^k+5) is in A141548: numbers of deficiency 6. - M. F. Hasler, Apr 23 2015
a(18) > 5*10^5. - Robert Price, Aug 23 2015
a(18) > 6*10^5. - Tyler NeSmith, Jan 18 2021
All terms are odd - Elmo R. Oliveira, Dec 01 2023

Examples

			2^3 + 5 = 13 is prime, but 2^4 + 5 = 21 is not.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), this sequence (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

Extensions

More terms from Santi Spadaro, Oct 04 2002
a(12) from Hans Havermann, Oct 07 2002
a(13)-a(15) from Charles R Greathouse IV, Oct 07 2011
a(16)-a(17) from Robert Price, Dec 06 2013

A057197 Numbers k such that 2^k + 15 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 22, 23, 26, 30, 32, 40, 42, 46, 61, 72, 76, 155, 180, 198, 203, 310, 328, 342, 508, 510, 515, 546, 808, 1563, 2772, 3882, 3940, 4840, 7518, 11118, 11552, 11733, 12738, 12858, 17421, 44122, 64660, 163560, 172455, 180496, 325866, 481840, 1009168
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

a(55) > 5*10^5. - Robert Price, Sep 14 2015
For these numbers k, 2^(k-1)*(2^k+15) has deficiency 16 (see A125248). - M. F. Hasler, Jul 18 2016

Examples

			For k = 5, 2^5 + 15 = 47 is prime.
For k = 15, 2^15 + 15 = 32783 is prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), this sequence (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(2^n+15)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 15 ], Print[n]], { n, 1, 12422 }]
    Select[Range[15000], PrimeQ[2^# + 15] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    for(n=1,oo,ispseudoprime(2^n+15)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(45)-a(53) from Robert Price, Dec 06 2013
a(54) from Robert Price, Sep 14 2015
a(55) from Stefano Morozzi, added by Elmo R. Oliveira, Dec 11 2023

A057200 Numbers k such that 2^k + 17 is prime.

Original entry on oeis.org

1, 13, 21, 33, 81, 129, 285, 297, 769, 3381, 4441, 7065, 77121, 133437, 184189, 191745, 1279921
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(17) > 5*10^5. - Robert Price, Oct 05 2015
For numbers k in this sequence, 2^(k-1)*(2^k+17) has deficiency 18 (see A223608). - M. F. Hasler, Jul 18 2016
All terms are odd. - Elmo R. Oliveira, Nov 19 2023

Crossrefs

Cf. A223608.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), this sequence (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+17)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 17 ], Print[ n ]], {n, 0, 11811} ]
    Select[Range[10000], PrimeQ[2^# + 17] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    is(n)=isprime(2^n+17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(13)-a(16) from Robert Price, Aug 24 2015
Edited by M. F. Hasler, Jul 18 2016
a(17) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 19 2023

A102633 Numbers k such that 2^k + 11 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 23, 29, 31, 55, 71, 77, 297, 573, 1301, 1555, 1661, 4937, 5579, 6191, 6847, 6959, 19985, 26285, 47093, 74167, 149039, 175137, 210545, 240295, 306153, 326585, 345547
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

a(34) > 5*10^5. - Robert Price, Aug 26 2015
For numbers k in this sequence, 2^(k-1)*(2^k+11) has deficiency 12 (see A141549). All terms are odd since 4^n+11 == 1+2 == 0 (mod 3). - M. F. Hasler, Jul 18 2016

Examples

			k = 1: 2^1 + 11 = 13 is prime.
k = 3: 2^3 + 11 = 19 is prime.
k = 2: 2^2 + 11 = 15 is not prime.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), this sequence (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[ If[ PrimeQ[2^n + 11], Print[n]], {n, 15250}] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    for(n=1,9e9,ispseudoprime(2^n+11)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Extensions

a(18)-a(22) from Robert G. Wilson v, Jan 21 2005
a(23)-a(33) from Robert Price, Dec 06 2013
Edited by M. F. Hasler, Jul 18 2016

A102634 Numbers k such that 2^k + 13 is prime.

Original entry on oeis.org

2, 4, 8, 20, 38, 64, 80, 292, 1132, 4108, 19934, 125278, 175628, 282184
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

If k is odd, then 2^k + 13 is divisible by 3. - Robert G. Wilson v, Jan 24 2005
a(15) > 5*10^5. - Robert Price, Aug 15 2015
For k in this sequence, the number 2^(k-1)*(2^k+13) has deficiency 14, cf. A141550. - M. F. Hasler, Jul 18 2016

Examples

			2^2+13 = 17 is prime.
2^4+13 = 29 is prime.
2^3+13 = 21 is not prime.
		

Crossrefs

Cf. A019434 (2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (this), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[m = n; If[PrimeQ[2^n + 13], Print[n]], {n, 2, 19125, 2}] (* Robert G. Wilson v, Jan 24 2005 *)
  • PARI
    first(m)=my(v=vector(m),r=1);for(i=1,m,while(!isprime(2^r + 13),r++);v[i]=r;r++);v; \\ Anders Hellström, Aug 15 2015

Formula

a(n) = 2*A253772(n). - Elmo R. Oliveira, Nov 12 2023

Extensions

a(10) from Robert G. Wilson v, Jan 24 2005
a(11)-a(14) from Robert Price, Aug 15 2015

A057201 Numbers k such that 2^k + 21 is prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 15, 16, 19, 44, 48, 51, 52, 61, 163, 196, 456, 492, 911, 997, 1616, 1631, 1647, 1803, 1899, 3112, 3584, 3956, 6848, 7023, 9535, 16657, 27035, 33843, 36551, 38859, 81485, 107287, 131383, 139476, 158497, 210061, 216752, 339168, 341355, 376731, 1173095
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(48) > 5*10^5. - Robert Price, Sep 17 2015

Examples

			k = 15, 2^15 + 21 = 32789 is prime.
k = 16, 2^16 + 21 = 65557 is prime.
		

Crossrefs

Cf. A094076.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), this sequence (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+21)]; // Vincenzo Librandi, Aug 28 2015
    
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 21 ], Print[ n ] ], {n, 1, 4000} ]
    Select[Range[10000], PrimeQ[2^# + 21] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    is(n)=isprime(2^n+21) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(30)-a(47) from Robert Price, Dec 06 2013
a(48) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 25 2023

A057203 Numbers k such that 2^k + 23 is prime.

Original entry on oeis.org

3, 7, 39, 79, 359, 451, 1031, 1039, 11311, 30227, 47599, 55731, 307099, 351831, 418851
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2000

Keywords

Comments

a(16) > 5*10^5. - Robert Price, Sep 06 2015
All terms are odd. - Elmo R. Oliveira, Dec 01 2023

Examples

			For k = 39, 2^39 + 23 = 549755813911 is prime.
		

Crossrefs

Cf. A094076.
Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), this sequence (2^k+23).

Programs

  • Mathematica
    Do[ If[ PrimeQ[2^n + 23], Print[ n ]], {n, 1, 5000} ]
  • PARI
    is(n)=isprime(2^n+23) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(9)-a(15) from Robert Price, Sep 06 2015

A057221 Numbers k such that 2^k + 19 is prime.

Original entry on oeis.org

2, 6, 30, 162, 654, 714, 1370, 1662, 1722, 2810, 77142, 156254, 432974, 1092242, 1245230
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2000

Keywords

Comments

a(14) > 5*10^5. - Robert Price, Aug 27 2015
All terms are even. - Robert Israel, Aug 28 2015
For numbers k in this sequence, the number 2^(k-1)*(2^k+19) has deficiency 20 (see A223607). - M. F. Hasler, Jul 18 2016

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), this sequence (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+19)]; // Vincenzo Librandi, Aug 28 2015
    
  • Maple
    select(n -> isprime(2^n+19), [seq(2*i,i=1..10000)]); # Robert Israel, Aug 28 2015
  • Mathematica
    Do[ If[ PrimeQ[ 2^n + 19 ], Print[ n ] ], {n, 1, 15000} ]
    Select[Range[10000], PrimeQ[2^# + 19] &] (* Vincenzo Librandi, Aug 28 2015 *)
  • PARI
    for(n=1,oo,ispseudoprime(2^n+19)&&print1(n",")) \\ M. F. Hasler, Jul 18 2016

Formula

a(n) = 2*A253774(n). - Joerg Arndt, Aug 28 2015

Extensions

a(11)-a(13) from Robert Price, Aug 27 2015
Edited by M. F. Hasler, Jul 18 2016
a(14)-a(15) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 19 2023

A104070 Primes of the form 2^k + 9.

Original entry on oeis.org

11, 13, 17, 41, 73, 137, 521, 1033, 262153, 8388617, 1073741833, 137438953481, 140737488355337, 144115188075855881, 73786976294838206473, 4835703278458516698824713, 39614081257132168796771975177, 664613997892457936451903530140172297
Offset: 1

Views

Author

Roger L. Bagula, Mar 02 2005

Keywords

Crossrefs

Cf. A000040, A057196 (numbers k such that 2^k + 9 is prime). [From Klaus Brockhaus, Mar 14 2009]

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is 2^n+9]; // Vincenzo Librandi, Jan 26 2011
  • Mathematica
    a = Delete[Union[Flatten[Table[If [PrimeQ[2^n + 9] == True, 2^ n + 9, 0], {n, 1, 400}]]], 1]
    Select[2^Range[0,100]+9,PrimeQ] (* Harvey P. Dale, Mar 11 2023 *)

Formula

a(n) = 2^A057196(n) + 9. - Elmo R. Oliveira, Nov 08 2023
Showing 1-10 of 28 results. Next