cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A057732 Numbers k such that 2^k + 3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784, 1110, 1704, 2008, 2139, 2191, 2367, 2370, 4002, 4060, 4062, 4552, 5547, 8739, 17187, 17220, 17934, 20724, 22732, 25927, 31854, 33028, 35754, 38244, 39796, 40347, 55456, 58312, 122550, 205962, 235326, 363120, 479844, 685578, 742452, 1213815, 1434400, 1594947, 1875552, 1940812, 2205444
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
A number k is in this sequence iff A062709(k) is in A057733; this is the case iff A257273(k) is in A125246. - M. F. Hasler, Apr 27 2015

Examples

			For k = 6, 2^6 + 3 = 67 is prime.
For k = 28, 2^28 + 3 = 268435459 is prime.
		

References

  • Mike Oakes, posting to primenumbers(AT)yahoogroups.com on Jul 08 2001

Crossrefs

Cf. A019434 (primes 2^k+1), this sequence (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196(2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+3)]; // Vincenzo Librandi, Apr 27 2015
  • Mathematica
    Select[Range[10000], PrimeQ[2^# + 3] &] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    for(n=1, 2200, if(isprime(2^n+3), print1(n, ", ")));
    
  • PARI
    for (n=1, 2, if (isprime(2^n+3), print1(n, ", "))); for(n=3, 100000, N=2^n+3 ; S=(N-5)/2 ; x=S ; for(j=1, n-1, x=Mod(x^2-2, N)) ; if(x==S , print1(n, ", "))) \\ produces terms corresponding to probable primes, see formula; Tony Reix, Aug 27 2015
    

Formula

Here is an LLT-like algorithm, using a cycle of the digraph x^2-2 modulo N, that finds terms of this sequence generating a PRP (PRobable Prime) of A057733 numbers: N=2^k+3; S0=(N-5)/2; s(0)=S0; s(i+1)=s(i)^2-2 modulo N; if s(k-1) == S0 then N is prime. - Tony Reix, Aug 27 2015

Extensions

More terms from Jason Earls, Jul 18 2001 and Mike Oakes, Jul 28 2001
a(47)-a(50) from Donovan Johnson 2006, verified by Paul Bourdelais, Mar 22 2012
a(51) is a probable prime based on trial factoring to 1E9 and PRP testing base 3,5,7 (PFGW v3.3.1). Discovered by Paul Bourdelais, Apr 09 2012
a(52)-a(54) from Paul Bourdelais, Jun 18 2019
a(55) from Paul Bourdelais, Jul 16 2019
a(56) from Paul Bourdelais, Apr 22 2020
a(57) from Paul Bourdelais, Jun 12 2020
a(58) from Paul Bourdelais, Aug 04 2020

A062709 a(n) = 2^n + 3.

Original entry on oeis.org

4, 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595, 17179869187
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2001

Keywords

Comments

Written in binary a(n) is 1000...00011 for n > 1.
For n >= 2, a(n) is the minimal k for which A000120(k(2^n-1)) is not multiple of n. - Vladimir Shevelev, Jun 05 2009

Examples

			a(3) = 2^3 + 3 = 8 + 3 = 11.
a(4) = 2^4 + 3 = 16 + 3 = 19.
		

Crossrefs

Primes in this sequence are A057733.

Programs

Formula

a(n) = 2a(n-1) - 3 = A052548(n) + 1 = A000051(n) + 2 = A000079(n) + 3 = A000225(n) + 4 = A030101(A004119(n)) for n > 1.
G.f.: (4 - 7*x)/((1 - 2*x)*(1 - x)).
a(n) = A173921(A000051(n+1)). - Reinhard Zumkeller, Mar 04 2010
E.g.f.: exp(x)*(3 + exp(x)). - Stefano Spezia, May 06 2023

A081091 Primes of the form 2^i + 2^j + 1, i > j > 0.

Original entry on oeis.org

7, 11, 13, 19, 37, 41, 67, 73, 97, 131, 137, 193, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65539, 133121, 147457, 163841, 262147, 262153, 262657, 270337, 524353, 524801
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2003

Keywords

Comments

This is sequence A070739 without the Fermat primes, A000215. Sequence A081504 lists the i for which there are no primes. - T. D. Noe, Jun 22 2007
Primes in A014311. - Reinhard Zumkeller, May 03 2012

Examples

			    7 = 2^2 + 2^1 + 1
   11 = 2^3 + 2^1 + 1
   13 = 2^3 + 2^2 + 1
   19 = 2^4 + 2^1 + 1
   37 = 2^5 + 2^2 + 1
   41 = 2^5 + 2^3 + 1
   67 = 2^6 + 2^1 + 1
   73 = 2^6 + 2^3 + 1
   97 = 2^6 + 2^5 + 1
  131 = 2^7 + 2^1 + 1
  137 = 2^7 + 2^3 + 1
  193 = 2^7 + 2^6 + 1
  521 = 2^9 + 2^3 + 1
		

Crossrefs

Essentially the same as A070739.
Cf. A095077 (primes with four bits set).
A057733 = 2^A057732 + 3 and A039687 = 3*2^A002253 + 1 are subsequences.

Programs

  • Haskell
    a081091 n = a081091_list !! (n-1)
    a081091_list = filter ((== 1) . a010051') a014311_list
    -- Reinhard Zumkeller, May 03 2012
    
  • Maple
    N:= 20: # to get all terms < 2^N
    select(isprime, [seq(seq(2^i+2^j+1,j=1..i-1),i=1..N-1)]); # Robert Israel, May 17 2016
  • Mathematica
    Select[Flatten[Table[2^i + 2^j + 1, {i, 21}, {j, i-1}]], PrimeQ] (* Alonso del Arte, Jan 11 2011 *)
  • PARI
    do(mx)=my(v=List(),t); for(i=2,mx,for(j=1,i-1,if(ispseudoprime(t=2^i+2^j+1), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • PARI
    is(n)=hammingweight(n)==3 && isprime(n) \\ Charles R Greathouse IV, Aug 28 2017
    
  • PARI
    A81091=[7]; next_A081091(p, i=exponent(p), j=exponent(p-2^i))=!until(isprime(2^i+2^j+1), j++>=i && i++ && j=1)+2^i+2^j
    A081091(n)={for(k=#A81091, n-1, A81091=concat(A81091, next_A081091(A81091[k]))); A81091[n]} \\ M. F. Hasler, Mar 03 2023
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A081091_gen(): # generator of terms
        return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(1) for s in multiset_permutations('0'*(l-1)+'1'))))
    A081091_list = list(islice(A081091_gen(),30)) # Chai Wah Wu, Jul 19 2022

Formula

A000120(a(n)) = 3.

A175524 A000120-deficient numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

For a more precise definition, see comment in A175522.
All odd primes (A065091) are in the sequence. Squares of the form (2^n+3)^2, n>=3, where 2^n+3 is prime (A057733), are also in the sequence. [Proof: (2^n+3)^2 = 2^(2*n)+2^(n+2)+2^(n+1)+2^3+1. Thus, since n>=3, A000120((2^n+3)^2)=5. Also, for primes of the form 2^n+3, (2^n+3)^2 has only two proper divisors, 1 and 2^n+3, so A000120(1)+A000120(2^n+3) = 4, and in conclusion, (2^n+3)^2 is deficient. QED]
It is natural to assume that there are infinitely many primes of the form 2^n+3 (by analogy with the Mersenne sequence 2^n-1). If this is true, the sequence contains infinitely many composite numbers, because it contains all of the form (2^n+3)^2.
a(n) = A006005(n) for n <= 30;

Crossrefs

Cf. A175522 (perfect version), A175526 (abundant version), A000120, A005100, A005101, A006005, A192895.

Programs

  • Haskell
    import Data.List (findIndices)
    a175524 n = a175524_list !! (n-1)
    a175524_list = map (+ 1) $ findIndices (< 0) a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    Select[Range[270], DivisorSum[#, DigitCount[#, 2, 1] &] < 2*DigitCount[#, 2, 1] &] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))<2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
  • Sage
    is_A175524 = lambda x: sum(A000120(d) for d in divisors(x)) < 2*A000120(x)
    A175524 = filter(is_A175524, IntegerRange(1, 10**4)) # D. S. McNeil, Dec 04 2010
    

Formula

A192895(a(n)) < 0. - Reinhard Zumkeller, Jul 12 2011

Extensions

More terms from Amiram Eldar, Feb 18 2019

A157007 Numbers k such that 2^k + 27 is prime.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 14, 16, 40, 41, 44, 86, 110, 125, 133, 134, 145, 154, 184, 194, 301, 308, 320, 685, 1001, 1066, 1496, 1633, 2005, 2864, 3241, 6286, 11585, 12854, 16514, 16540, 19246, 24538, 28705, 57644, 65366, 85276, 89113, 194854, 266680, 376790, 478088
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

a(49) > 5*10^5. - Robert Price, Nov 06 2015

Examples

			For k = 1, 2^1 + 27 = 29.
For k = 2, 2^2 + 27 = 31.
For k = 4, 2^4 + 27 = 43.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23), A157006 (2^k+25), this sequence (2^k+27), A156982 (2^k+29), A247952 (2^k+31), A247953 (2^k+33), A220077 (2^k+35).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+27)]; // Vincenzo Librandi, Oct 05 2015
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 27], n, 0], {n, 1, 2000}]], 1]
    Select[Range[5000],PrimeQ[2^#+27]&] (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=1, 1e3, if(isprime(2^n+3^3), print1(n", "))) \\ Altug Alkan, Oct 04 2015
    

Extensions

More terms from Harvey P. Dale, Mar 24 2011
a(33)-a(42) from Robert Price, Oct 04 2015
a(43)-a(47) discovered by Henri Lifchitz and Lelio R Paula from Lifchitz link by Robert Price, Oct 04 2015
a(48) from Robert Price, Nov 06 2015

A234451 Number of ways to write n = k + m with k > 0 and m > 0 such that 2^(phi(k)/2 + phi(m)/6) + 3 is prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 3, 5, 4, 5, 4, 6, 4, 4, 5, 5, 5, 6, 6, 6, 5, 6, 8, 7, 6, 5, 7, 8, 7, 10, 6, 7, 9, 7, 5, 5, 8, 6, 6, 7, 9, 3, 7, 10, 9, 3, 8, 6, 8, 6, 9, 9, 12, 5, 8, 8, 10, 9, 10, 9, 8, 8, 8, 10, 9, 12, 10, 13, 11, 9, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 26 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 9. Also, any integer n > 13 can be written as k + m with k > 0 and m > 0 such that 2^(phi(k)/2 + phi(m)/6) - 3 is prime.
(ii) Each integer n > 25 can be written as k + m with k > 0 and m > 0 such that 3*2^(phi(k)/2 + phi(m)/8) + 1 (or 3*2^(phi(k)/2 + phi(m)/12) + 1 when n > 38) is prime. Also, any integer n > 14 can be written as k + m with k > 0 and m > 0 such that 3*2^(phi(k)/2 + phi(m)/12) - 1 is prime.
This conjecture implies that there are infinitely many primes in any of the four forms 2^n + 3, 2^n - 3, 3*2^n + 1, 3*2^n - 1.
We have verified the conjecture for n up to 50000.

Examples

			a(10) = 1 since 10 = 3 + 7 with 2^(phi(3)/2 + phi(7)/6) + 3 = 7 prime.
a(11) = 1 since 11 = 4 + 7 with 2^(phi(4)/2 + phi(7)/6) + 3 = 7 prime.
a(12) = 2 since 12 = 3 + 9 = 5 + 7 with 2^(phi(3)/2 + phi(9)/6) + 3 = 7 and 2^(phi(5)/2 + phi(7)/6) + 3 = 11 both prime.
a(769) = 1 since 769 = 31 + 738 with 2^(phi(31)/2 + phi(738)/6) + 3 = 2^(55) + 3 prime.
a(787) = 1 since 787 = 112 + 675 with 2^(phi(112)/2 + phi(675)/6) + 3 = 2^(84) + 3 prime.
a(867) = 1 since 867 = 90 + 777 with 2^(phi(90)/2 + phi(777)/6) + 3 = 2^(84) + 3 prime.
a(869) = 1 since 869 = 51 + 818 with 2^(phi(51)/2 + phi(818)/6) + 3 = 2^(84) + 3 prime.
a(913) = 1 since 913 = 409 + 504 with 2^(phi(409)/2 + phi(504)/6) + 3 = 2^(228) + 3 prime.
a(1085) = 1 since 1085 = 515 + 570 with 2^(phi(515)/2 + phi(570)/6) + 3 = 2^(228) + 3 prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=2^(EulerPhi[k]/2+EulerPhi[n-k]/6)+3
    a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A135535 Primes of the form 4^k - 3.

Original entry on oeis.org

13, 61, 1021, 4093, 16381, 1048573, 4194301, 16777213, 19807040628566084398385987581, 83076749736557242056487941267521533, 5316911983139663491615228241121378301, 1427247692705959881058285969449495136382746621, 23945242826029513411849172299223580994042798784118781, 118571099379011784113736688648896417641748464297615937576404566024103044751294461, 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444733
Offset: 1

Views

Author

Daniele Corradetti (d.corradetti(AT)gmail.com), Feb 21 2008

Keywords

Comments

Involved in the "New Mersenne Prime Conjecture" and in some generalizations of Mersenne primes.
Subsequence of A050415. - Elmo R. Oliveira, Nov 28 2023

Examples

			16381 is a term because 4^7 - 3 = 16381 is prime.
		

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (pp. 114-134).

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[4^n - 3], Print[4^n - 3]], {n, 100}] (* Robert G. Wilson v, Feb 29 2008 *)
    Select[4^Range[200]-3,PrimeQ] (* Harvey P. Dale, Jul 11 2022 *)

Formula

a(n) = 4^A059266(n) - 3. - Ryan Propper, Feb 26 2008

Extensions

More terms from R. J. Mathar, Robert G. Wilson v and Ryan Propper, Feb 26 2008

A257273 a(n) = 2^(n-1)*(2^n+3).

Original entry on oeis.org

2, 5, 14, 44, 152, 560, 2144, 8384, 33152, 131840, 525824, 2100224, 8394752, 33566720, 134242304, 536920064, 2147581952, 8590131200, 34360131584, 137439739904, 549757386752, 2199026401280, 8796099313664, 35184384671744, 140737513521152, 562950003752960, 2251799914348544, 9007199456067584
Offset: 0

Views

Author

M. F. Hasler, Apr 27 2015

Keywords

Comments

a(n) is in A125246 <=> n is in A057732 <=> A062709(n) is in A057733.
These are also the row sum of the triangle A146769: For n>=1, a(n-1) is the sum of row n of A146769.

Crossrefs

Programs

  • Magma
    [2^(n-1)*(2^n+3): n in [0..35]]; // Vincenzo Librandi, Apr 27 2015
    
  • Mathematica
    Table[2^(n - 1) (2^n + 3), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
    CoefficientList[Series[(2 - 7 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
    LinearRecurrence[{6,-8},{2,5},30] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    a(n)=2^(n-1)*(2^n+3)
    
  • PARI
    Vec((2-7*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015

Formula

G.f.: (2-7*x)/((1-4*x)*(1-2*x)). - Vincenzo Librandi, Apr 27 2015
a(n) = 6*a(n-1)-8*a(n-2). - Colin Barker, Apr 27 2015

A156940 Primes of the form 2^k + 11.

Original entry on oeis.org

13, 19, 43, 139, 523, 32779, 8388619, 536870923, 2147483659, 36028797018963979, 2361183241434822606859, 151115727451828646838283, 254629497041810760783555711051172270131433549208242031329517556169297662470417088272924683
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 18 2009

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..350] | IsPrime(a) where a is 2^n+11 ]; // Vincenzo Librandi, Nov 26 2010
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 11], 2^n + 11, 0], {n, 1, 200}]],1]

Formula

a(n) = 2^A102633(n) + 11. - R. J. Mathar, Feb 20 2009

Extensions

a(13) from Vincenzo Librandi, Apr 29 2010

A228026 Primes of the form 4^k + 3.

Original entry on oeis.org

7, 19, 67, 4099, 65539, 262147, 268435459, 1073741827, 19342813113834066795298819
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Examples

			67 is a term because 4^3 + 3 = 67 is prime.
		

Crossrefs

Cf. A089437 (associated k).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), this sequence (r=4, h=3), A228027 (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  4^n+3];
  • Mathematica
    Select[Table[4^n + 3, {n, 0, 200}], PrimeQ]

Formula

a(n) = 4^A089437(n) + 3. - Elmo R. Oliveira, Nov 14 2023

Extensions

Cross-references corrected by Robert Price, Aug 01 2017
Showing 1-10 of 33 results. Next