Original entry on oeis.org
1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1
Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009
- Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
- Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645.
- D. Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 6-14.
- D. Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Daniel Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Index entries for linear recurrences with constant coefficients, signature (8,-7).
-
[7^n-6: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
-
CoefficientList[Series[(1 + 35 x)/((1-x) (1-7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
NestList[7 # + 36 & , 1, 18] (* Bruno Berselli, Feb 06 2013 *)
LinearRecurrence[{8,-7},{1,43},30] (* Harvey P. Dale, Nov 27 2014 *)
-
a(n)=7^n-6 \\ Charles R Greathouse IV, Oct 07 2015
Original entry on oeis.org
1, 31, 211, 1291, 7771, 46651, 279931, 1679611, 10077691, 60466171, 362797051, 2176782331, 13060694011, 78364164091, 470184984571, 2821109907451, 16926659444731, 101559956668411, 609359740010491, 3656158440062971
Offset: 1
Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Daniel Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Index entries for linear recurrences with constant coefficients, signature (7, -6).
A164785
a(n) = 5^n - 4.
Original entry on oeis.org
1, 21, 121, 621, 3121, 15621, 78121, 390621, 1953121, 9765621, 48828121, 244140621, 1220703121, 6103515621, 30517578121, 152587890621, 762939453121, 3814697265621, 19073486328121, 95367431640621, 476837158203121
Offset: 1
Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Daniel Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Daniel Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
-
[5^n-4: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
-
5^Range[50]-4 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
LinearRecurrence[{6,-5},{1,21},30] (* or *) NestList[5 # + 16 &, 1, 30] (* Harvey P. Dale, Jun 07 2012 *)
CoefficientList[Series[(1 + 15 x)/(1 - 6 x + 5 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
Original entry on oeis.org
1, 57, 505, 4089, 32761, 262137, 2097145, 16777209, 134217721, 1073741817, 8589934585, 68719476729, 549755813881, 4398046511097, 35184372088825, 281474976710649, 2251799813685241, 18014398509481977, 144115188075855865
Offset: 1
Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Daniel Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Index entries for linear recurrences with constant coefficients, signature (9, -8).
A383872
Nonprime numbers whose sum of proper divisors is a power of 4.
Original entry on oeis.org
9, 12, 26, 56, 76, 122, 332, 992, 2042, 3344, 4336, 8186, 16256, 32762, 227744, 266176, 269072, 299576, 856544, 2097146, 5385812, 8388602, 16580864, 17895664, 19173944, 33554426, 61008020, 67100672, 201931760, 1074789376, 1108378592, 17179738112, 62472251540, 68700578816
Offset: 1
12 is not prime; 12 has proper divisors 1, 2, 3, 4, and 6, with a sum of 16. This is a square number as well as a power of 2.
-
filter:= proc(n) local s;
s:= numtheory:-sigma(n)-n;
s > 1 and s = 4^padic:-ordp(s,4)
end proc:
select(filter, [$4..10^7]); # Robert Israel, May 13 2025
-
Zweierpotenzen = {};
Quadratzahlen = {};
Beides = {};
For[k = 1, k <= 50000000, k++,
SumET = Total[Divisors[k]] - k;
If[IntegerQ[Log[2, SumET]] && PrimeQ[k] == False,
AppendTo[Zweierpotenzen, k]];
If[IntegerQ[Sqrt[SumET]] && PrimeQ[k] == False,
AppendTo[Quadratzahlen, k ]]];
Beides = Intersection[Zweierpotenzen, Quadratzahlen];
Beides
-
isok(k) = if (!ispseudoprime(k), my(s=sigma(k)-k, z); issquare(s) && (ispower(s, , &z) && (z==2))); \\ Michel Marcus, May 13 2025
A181285
Primes of the form 5^k - 4.
Original entry on oeis.org
3121, 78121, 30517578121, 710542735760100185871124267578121, 413590306276513837435704346034981426782906055450439453121
Offset: 1
3121 = 5^5 - 4 is prime and therefore is in the sequence.
-
n:=1000: S:={}: for i from 1 to n do if type(5^i-4,prime)=true then S:=S union {5^i-4} end if od; S;
-
Select[5^Range[90]-4,PrimeQ] (* Harvey P. Dale, Aug 23 2013 *)
Showing 1-6 of 6 results.
Comments