cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A125247 Numbers n whose abundance sigma(n) - 2n = -8. Numbers n whose deficiency is 8.

Original entry on oeis.org

22, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912, 17619844, 2147713024, 6800695312, 34360655872, 549759483904, 1661355408388, 28502765343364, 82994670582016, 99249696661504, 120646991405056, 431202442356004, 952413274955776
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

a(19) > 10^12. - Donovan Johnson, Dec 08 2011
a(20) > 10^13. - Giovanni Resta, Mar 29 2013
a(30) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
a(20) <= 36028797958488064 ~ 3.6*10^16. Indeed, if k is in A057195 then 2^(k-1)*A168415(k) is in this sequence, and k=28 yields this upper bound for a(20) which is in any case a term of this sequence. - M. F. Hasler, Apr 27 2015
If n is in this sequence and p a prime not dividing n, then np is abundant if and only if p < sigma(n)/8 = n/4-1. For all n=a(k) except {22, 70564, 100804, 17619844}, there is such a p near this limit, such that n*p is a primitive weird number (A002975; in A258882 for the terms mentioned in the preceding comment). - M. F. Hasler, Jul 20 2016
Any term x of this sequence can be combined with any term y of A088833 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is there any odd number in this sequence? Is it possible to prove the contrary? - M. F. Hasler, Feb 22 2017

Examples

			The abundance of 22 = (1+2+11+22)-44 = -8
		

Crossrefs

Cf. A033880, A088833 (abundance 8).

Programs

  • Magma
    [n: n in [1..2*10^7] | (DivisorSigma(1,n)-2*n) eq - 8]; // Vincenzo Librandi, Jul 22 2016
  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] - 2 # == -8 &] (* Michael De Vlieger, Jul 21 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-8),print1(n,",")))
    

Extensions

a(13)-a(15) from Klaus Brockhaus, Nov 29 2006
a(16)-a(17) from Donovan Johnson, Dec 23 2008
a(18) from Donovan Johnson, Dec 08 2011
a(19) from Giovanni Resta, Mar 29 2013
a(20)-a(25) from Hiroaki Yamanouchi, Aug 21 2018

A188165 a(n) = 2^n + 9.

Original entry on oeis.org

10, 11, 13, 17, 25, 41, 73, 137, 265, 521, 1033, 2057, 4105, 8201, 16393, 32777, 65545, 131081, 262153, 524297, 1048585, 2097161, 4194313, 8388617, 16777225, 33554441, 67108873, 134217737, 268435465, 536870921, 1073741833, 2147483657, 4294967305
Offset: 0

Views

Author

Brad Clardy, Mar 23 2011

Keywords

Crossrefs

Cf. A000079, A104070 (primes of this form), A168415.

Programs

  • Magma
    [2^n+9: n in [0..40]]; // Vincenzo Librandi, May 13 2014
  • Mathematica
    Table[2^n + 9, {n, 0, 40}] (* or *) CoefficientList[Series[(10 - 19 x)/((1 - x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
  • PARI
    a(n) = 1<Michel Marcus, Jul 19 2013
    

Formula

From Bruno Berselli, Sep 26 2011: (Start)
G.f.: (10-19*x)/(1-3*x+2*x^2).
a(n) = 2*a(n-1)-9 = 3*a(n-1)-2*a(n-2).
a(n) = A168415(n)+2. (End)
E.g.f.: exp(2*x) + 9*exp(x). - Elmo R. Oliveira, Nov 08 2023

A240941 Numbers k that divide 2^k + 7.

Original entry on oeis.org

1, 3, 15, 75, 6308237, 871506915, 2465425275, 2937864075, 2948967789, 83313712623, 195392257275, 11126651718075, 45237726869109, 2920008144904215
Offset: 1

Views

Author

Derek Orr, Aug 04 2014

Keywords

Comments

Some larger terms: 213736983815110866141, 23423890178454972202084722709155. - Max Alekseyev, Sep 23 2016

Examples

			2^3 + 7 = 15 is divisible by 3. Thus 3 is a term of this sequence.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {1,3}; While[k < 2500000001, If[ PowerMod[2, k, k] + 7 == k, AppendTo[ lst, k]; Print[ k]]; k += 2]; lst (* Robert G. Wilson v, Aug 05 2014 *)
  • PARI
    for(n=1,10^9,if(Mod(2,n)^n==Mod(-7,n),print1(n,", ")))

Extensions

a(7)-a(9) from Robert G. Wilson v, Aug 05 2014
a(10)-a(14) from Max Alekseyev, Sep 23 2016

A287640 Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
Offset: 0

Views

Author

Alois P. Heinz, May 28 2017

Keywords

Examples

			T(4,0) = 1: 1234.
T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 1: 13|2|4.
T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5.
T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6.
T(6,4) = 1: 1345|2|6.
T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7.
Triangle T(n,k) begins:
  1;
  1;
  1,    1;
  1,    4;
  1,   13,     1;
  1,   41,     9,    1;
  1,  131,    59,   11,    1;
  1,  428,   344,   88,   15,   1;
  1, 1429,  1906,  634,  146,  23,  1;
  1, 4861, 10345, 4389, 1231, 280, 39, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A001453.
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1,
          [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
        end:
    T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])):
    seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
    T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]];
    Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)

Formula

T(n,k) = A287641(n,k) - A287641(n,k-1) for k>0, T(n,0) = 1.
T(n+4,n+1) = A168415(n) for n>0.

A257272 a(n) = 2^(n-1)*(2^n+7).

Original entry on oeis.org

4, 9, 22, 60, 184, 624, 2272, 8640, 33664, 132864, 527872, 2104320, 8402944, 33583104, 134275072, 536985600, 2147713024, 8590393344, 34360655872, 137440788480, 549759483904, 2199030595584, 8796107702272, 35184401448960, 140737547075584, 562950070861824, 2251800048566272, 9007199724503040
Offset: 0

Views

Author

M. F. Hasler, Apr 27 2015

Keywords

Comments

For n in A057195, a(n) is of deficiency 8, i.e., in A125247.
Also, the third column (k=2) of the table given in A181444.

Crossrefs

Programs

  • Magma
    [2^(n-1)*(2^n+7): n in [0..25]]; // Vincenzo Librandi, Apr 27 2015
    
  • Mathematica
    Table[2^(n - 1) (2^n + 7), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
    CoefficientList[Series[(4 - 15 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    a(n)=2^(n-1)*(2^n+7)
    
  • PARI
    Vec((4-15*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015

Formula

a(n) = 2^(n-1)*A168415(n).
n in A057195 <=> A168415(n) in A104066 <=> a(n) in A125247.
G.f.: (4-15*x)/((1-4*x)*(1-2*x)). - Vincenzo Librandi, Apr 27 2015

A242475 a(n) = 2^n + 8.

Original entry on oeis.org

9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0

Views

Author

Vincenzo Librandi, May 20 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^n+8: n in [0..40]];
  • Mathematica
    Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
    LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)

Formula

G.f.: (9 - 17*x)/((1 - x)*(1 - 2*x)).
a(n) = 2*a(n-1) - 8 = 3*a(n-1) - 2*a(n-2).
a(n) = A052548(n)+6 = A140504(n)+4 = A153972(n)+2.
E.g.f.: exp(2*x) + 8*exp(x). - Elmo R. Oliveira, Nov 11 2023

A246139 a(n) = 2^n + 10.

Original entry on oeis.org

11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Comments

First trisection of A085688. [Bruno Berselli, Aug 19 2014]

Crossrefs

Cf. Sequences of the form 2^n + k: A000079 (k=0), A000051 (k=1), A052548 (k=2), A062709 (k=3), A140504 (k=4), A168614 (k=5), A153972 (k=6), A168415 (k=7), A242475 (k=8), A188165 (k=9), this sequence (k=10).
Cf. A085688.

Programs

  • Magma
    [2^n+10: n in [0..40]];
    
  • Mathematica
    Table[2^n + 10, {n, 0, 40}]
  • PARI
    vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (11 - 21*x)/(1 - 3*x + 2*x^2).
a(n) = A000079(n) + 10.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
E.g.f.: exp(2*x) + 10*exp(x). - Elmo R. Oliveira, Nov 11 2023

A193579 a(n) = 2*4^n + 7.

Original entry on oeis.org

9, 15, 39, 135, 519, 2055, 8199, 32775, 131079, 524295, 2097159, 8388615, 33554439, 134217735, 536870919, 2147483655, 8589934599, 34359738375, 137438953479, 549755813895, 2199023255559, 8796093022215, 35184372088839, 140737488355335, 562949953421319, 2251799813685255
Offset: 0

Views

Author

Brad Clardy, Sep 20 2011

Keywords

Comments

Bisection of A168415 (odd part).

Crossrefs

Programs

  • Magma
    [2*4^n + 7: n in [0..30]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    2*4^Range[0,30]+7 (* or *) LinearRecurrence[{5,-4},{9,15},30] (* Harvey P. Dale, Jun 13 2020 *)
  • PARI
    a(n) = 2*4^n+7 \\ Felix Fröhlich, Nov 07 2018
    
  • PARI
    Vec(3*(3 - 10*x)/((1 - x)*(1 - 4*x)) + O(x^20)) \\ Felix Fröhlich, Nov 07 2018

Formula

a(n) = 2^(2n + 1) + 7 = 3*(A020988(n) + 3).
From Bruno Berselli, Sep 20 2011: (Start)
G.f.: 3*(3 - 10*x)/((1 - x)*(1 - 4*x)).
a(n) = A085688(A016969(n)). (End)
E.g.f.: 7*exp(x) + 2*exp(4*x). - Franck Maminirina Ramaharo, Nov 07 2018

A195463 a(n) = 4^(n+1) + 7.

Original entry on oeis.org

11, 23, 71, 263, 1031, 4103, 16391, 65543, 262151, 1048583, 4194311, 16777223, 67108871, 268435463, 1073741831, 4294967303, 17179869191, 68719476743, 274877906951, 1099511627783, 4398046511111, 17592186044423, 70368744177671, 281474976710663, 1125899906842631
Offset: 0

Views

Author

Brad Clardy, Sep 19 2011

Keywords

Comments

These are the even terms of A168415. Since the odd terms of A168415 are divisible by three the primes of this sequence are the same as A104066.

Crossrefs

Programs

Formula

a(n) = 4^(n+1) + 7.
From Alexander R. Povolotsky, Sep 19 2011: (Start)
G.f.: (11 - 32*x)/(1 - 5*x + 4*x^2).
a(n+1) = 4*a(n) - 21. (End)
a(n) = A188165(2*n+2) - 2. - Bruno Berselli, Sep 26 2011
E.g.f.: exp(x)*(4*exp(3*x) + 7). - Elmo R. Oliveira, Feb 20 2025

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023
Showing 1-10 of 10 results.