A125247
Numbers n whose abundance sigma(n) - 2n = -8. Numbers n whose deficiency is 8.
Original entry on oeis.org
22, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912, 17619844, 2147713024, 6800695312, 34360655872, 549759483904, 1661355408388, 28502765343364, 82994670582016, 99249696661504, 120646991405056, 431202442356004, 952413274955776
Offset: 1
The abundance of 22 = (1+2+11+22)-44 = -8
-
[n: n in [1..2*10^7] | (DivisorSigma(1,n)-2*n) eq - 8]; // Vincenzo Librandi, Jul 22 2016
-
Select[Range[10^6], DivisorSigma[1, #] - 2 # == -8 &] (* Michael De Vlieger, Jul 21 2016 *)
-
for(n=1,1000000,if(((sigma(n)-2*n)==-8),print1(n,",")))
A188165
a(n) = 2^n + 9.
Original entry on oeis.org
10, 11, 13, 17, 25, 41, 73, 137, 265, 521, 1033, 2057, 4105, 8201, 16393, 32777, 65545, 131081, 262153, 524297, 1048585, 2097161, 4194313, 8388617, 16777225, 33554441, 67108873, 134217737, 268435465, 536870921, 1073741833, 2147483657, 4294967305
Offset: 0
-
[2^n+9: n in [0..40]]; // Vincenzo Librandi, May 13 2014
-
Table[2^n + 9, {n, 0, 40}] (* or *) CoefficientList[Series[(10 - 19 x)/((1 - x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
-
a(n) = 1<Michel Marcus, Jul 19 2013
A240941
Numbers k that divide 2^k + 7.
Original entry on oeis.org
1, 3, 15, 75, 6308237, 871506915, 2465425275, 2937864075, 2948967789, 83313712623, 195392257275, 11126651718075, 45237726869109, 2920008144904215
Offset: 1
2^3 + 7 = 15 is divisible by 3. Thus 3 is a term of this sequence.
-
k = 1; lst = {1,3}; While[k < 2500000001, If[ PowerMod[2, k, k] + 7 == k, AppendTo[ lst, k]; Print[ k]]; k += 2]; lst (* Robert G. Wilson v, Aug 05 2014 *)
-
for(n=1,10^9,if(Mod(2,n)^n==Mod(-7,n),print1(n,", ")))
A287640
Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 1: 13|2|4.
T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5.
T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6.
T(6,4) = 1: 1345|2|6.
T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 13, 1;
1, 41, 9, 1;
1, 131, 59, 11, 1;
1, 428, 344, 88, 15, 1;
1, 1429, 1906, 634, 146, 23, 1;
1, 4861, 10345, 4389, 1231, 280, 39, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1,
[seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
end:
T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])):
seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
-
b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]];
Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)
A257272
a(n) = 2^(n-1)*(2^n+7).
Original entry on oeis.org
4, 9, 22, 60, 184, 624, 2272, 8640, 33664, 132864, 527872, 2104320, 8402944, 33583104, 134275072, 536985600, 2147713024, 8590393344, 34360655872, 137440788480, 549759483904, 2199030595584, 8796107702272, 35184401448960, 140737547075584, 562950070861824, 2251800048566272, 9007199724503040
Offset: 0
-
[2^(n-1)*(2^n+7): n in [0..25]]; // Vincenzo Librandi, Apr 27 2015
-
Table[2^(n - 1) (2^n + 7), {n, 0, 30}] (* Bruno Berselli, Apr 27 2015 *)
CoefficientList[Series[(4 - 15 x)/((1 - 4 x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2015 *)
-
a(n)=2^(n-1)*(2^n+7)
-
Vec((4-15*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 27 2015
A242475
a(n) = 2^n + 8.
Original entry on oeis.org
9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0
-
[2^n+8: n in [0..40]];
-
Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)
A246139
a(n) = 2^n + 10.
Original entry on oeis.org
11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0
Cf. Sequences of the form 2^n + k:
A000079 (k=0),
A000051 (k=1),
A052548 (k=2),
A062709 (k=3),
A140504 (k=4),
A168614 (k=5),
A153972 (k=6),
A168415 (k=7),
A242475 (k=8),
A188165 (k=9), this sequence (k=10).
-
[2^n+10: n in [0..40]];
-
Table[2^n + 10, {n, 0, 40}]
-
vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014
A193579
a(n) = 2*4^n + 7.
Original entry on oeis.org
9, 15, 39, 135, 519, 2055, 8199, 32775, 131079, 524295, 2097159, 8388615, 33554439, 134217735, 536870919, 2147483655, 8589934599, 34359738375, 137438953479, 549755813895, 2199023255559, 8796093022215, 35184372088839, 140737488355335, 562949953421319, 2251799813685255
Offset: 0
A195463
a(n) = 4^(n+1) + 7.
Original entry on oeis.org
11, 23, 71, 263, 1031, 4103, 16391, 65543, 262151, 1048583, 4194311, 16777223, 67108871, 268435463, 1073741831, 4294967303, 17179869191, 68719476743, 274877906951, 1099511627783, 4398046511111, 17592186044423, 70368744177671, 281474976710663, 1125899906842631
Offset: 0
A267615
a(n) = 2^n + 11.
Original entry on oeis.org
12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0
Cf. sequences with closed form 2^n + k - 1:
A168616 (k=-4),
A028399 (k=-3),
A036563 (k=-2),
A000918 (k=-1),
A000225 (k=0),
A000079 (k=1),
A000051 (k=2),
A052548 (k=3),
A062709 (k=4),
A140504 (k=5),
A168614 (k=6),
A153972 (k=7),
A168415 (k=8),
A242475 (k=9),
A188165 (k=10),
A246139 (k=11), this sequence (k=12).
-
[2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
-
Table[2^n + 11, {n, 0, 35}]
LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
-
a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
Showing 1-10 of 10 results.
Comments