cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A077374 Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1

Views

Author

Jason Earls, Nov 30 2002

Keywords

Comments

Apart from {1, 3, 5, 7, 9, 11, 15, 21, 315}, subset of A088012. Probably finite. - Charles R Greathouse IV, Mar 28 2011
a(15) > 10^13. - Giovanni Resta, Mar 29 2013
The abundance of the given terms a(1..14) is: (-1, -2, -4, -6, -5, -10, -6, -10, -6, -6, 6, 6, 6, -6). See also A171929, A188263 and A188597 for numbers with abundancy sigma(n)/n close to 2. - M. F. Hasler, Feb 21 2017
a(15) > 10^22. - Wenjie Fang, Jul 13 2017

Examples

			sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))

Extensions

a(14) from Farideh Firoozbakht, Jan 12 2004

A088833 Numbers n whose abundance is 8: sigma(n) - 2n = 8.

Original entry on oeis.org

56, 368, 836, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 2087936, 2291936, 13174976, 29465852, 35021696, 45335936, 120888092, 260378492, 381236216, 775397948, 3381872252, 4856970752, 6800228816, 8589344768, 44257207676, 114141404156
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

A subset of A045770.
If p=2^m-9 is prime (m is in the sequence A059610) then n=2^(m-1)*p is in the sequence. See comment lines of the sequence A088831. 56, 368, 128768, 2087936 & 8589344768 are of the mentioned form. - Farideh Firoozbakht, Feb 15 2008
a(28) > 10^12. - Donovan Johnson, Dec 08 2011
a(31) > 10^13. - Giovanni Resta, Mar 29 2013
a(38) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A125247 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			Except first 4 terms of A045770 (1, 7, 10, and 49) are here: abundances = {-1,-6,-2,-41,8,8,8,8,8,8,8,8,8,8,8,8,8}.
		

Crossrefs

Programs

Extensions

a(14)-a(17) from Farideh Firoozbakht, Feb 15 2008
a(18)-a(25) from Donovan Johnson, Dec 23 2008
a(26)-a(27) from Donovan Johnson, Dec 08 2011

A141548 Numbers n whose deficiency is 6.

Original entry on oeis.org

7, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1

Views

Author

Keywords

Comments

a(9) > 10^12. - Donovan Johnson, Dec 08 2011
a(9) > 10^13. - Giovanni Resta, Mar 29 2013
a(9) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
For all k in A059242, the number m = 2^(k-1)*(2^k+5) is in this sequence. This yields further terms 2^46*(2^47+5), 2^52*(2^53+5), 2^140*(2^141+5), ... All even terms known so far and the initial 7 = 2^0*(2^1+5) are of this form. All odd terms beyond a(2) are of the form a(n) = a(k)*p*q, k < n. We have proved that there is no further term of this form with the a(k) given so far. - M. F. Hasler, Apr 23 2015
A term n of this sequence multiplied by a prime p not dividing it is abundant if and only if p < sigma(n)/6 = n/3-1. For the even terms 592 and 2102272, there is such a prime near this limit (191 resp. 693571) such that n*p is a primitive weird number, cf. A002975. For a(3)=52, the largest such prime, 11, is already too small. Odd weird numbers do not exist within these limits. - M. F. Hasler, Jul 19 2016
Any term x of this sequence can be combined with any term y of A087167 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			a(1) = 7, since 2*7 - sigma(7) = 14 - 8 = 6. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A087485 (odd terms).
Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (deficiency 16), A223608 (deficiency 18), A223607 (deficiency 20).
Cf. A087167 (abundance 6).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -6]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n+6,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 6 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    is(n)=sigma(n)==2*n-6 \\ Charles R Greathouse IV, Apr 23 2015, corrected by M. F. Hasler, Jul 18 2016
    

Extensions

a(8) from Donovan Johnson, Dec 08 2011

A191363 Numbers m such that sigma(m) = 2*m - 2.

Original entry on oeis.org

3, 10, 136, 32896, 2147516416
Offset: 1

Views

Author

Luis H. Gallardo, May 31 2011

Keywords

Comments

Let k be a nonnegative integer such that F(k) = 2^(2^k) + 1 is prime (a Fermat prime A019434), then m = (F(k)-1)*F(k)/2 appears in the sequence.
Conjecture: a(1)=3 is the only odd term of the sequence.
Conjecture: All terms of the sequence are of the above form derived from Fermat primes.
The sequence has 5 (known) terms in common with sequences A055708 (k-1 | sigma(k)) and A056006 (k | sigma(k)+2) since {a(n)} is a subsequence of both.
The first five terms of the sequence are respectively congruent to 3, 4, 4, 4, 4 modulo 6.
After a(5) there are no further terms < 8*10^9.
Up to m = 1312*10^8 there are no further terms in the class congruent to 4 modulo 6.
a(6) > 10^12. - Donovan Johnson, Dec 08 2011
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
a(6) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
See A125246 for numbers with deficiency 4, i.e., sigma(m) = 2*m - 4, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term m of this sequence multiplied by a prime p not dividing it is abundant if and only if p < m-1. For each of a(2..5) there is such a prime near this limit (here: 7, 127, 30197, 2147483647) such that a(k)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 19 2016
Any term m of this sequence can be combined with any term j of A088831 to satisfy the property (sigma(m) + sigma(j))/(m+j) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. [Proof: If m = a(n) and j = A088831(k), then sigma(m) = 2m-2 and sigma(j) = 2j+2. Thus, sigma(m) + sigma(j) = (2m-2) + (2j+2) = 2m + 2j = 2(m+j), which implies that (sigma(m) + sigma(j))/(m+j) = 2(m+j)/(m+j) = 2.] - Timothy L. Tiffin, Sep 13 2016
At least the first five terms are a subsequence of A295296 and of A295298. - David A. Corneth, Antti Karttunen, Nov 26 2017
Conjectures: all terms are second hexagonal numbers (A014105). There are no terms with middle divisors. - Omar E. Pol, Oct 31 2018
The symmetric representation of sigma(m) of each of the 5 numbers in the sequence consists of 2 parts of width 1 that meet at the diagonal (subsequence of A246955). - Hartmut F. W. Hoft, Mar 04 2022
The first five terms coincide with the sum of two successive terms of A058891. The same is not true for a(6), if such exists. - Omar E. Pol, Mar 03 2023

Examples

			For n=1, a(1) = 3 since sigma(3) = 4 = 2*3 - 2.
		

Crossrefs

Cf. A000203, A002975, A056006, A055708, A088831 (abundance 2).
Cf. A033880, A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A125248 (deficiency 16).
Cf. A058891.

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -2]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    ok[n_] := DivisorSigma[1,n] == 2*n-2; Select[ Table[ 2^(2^k-1) * (2^(2^k)+1), {k, 0, 5}], ok] (* Jean-François Alcover, Sep 14 2011, after conjecture *)
    Select[Range[10^6], DivisorSigma[1, #] == 2 # - 2 &] (* Michael De Vlieger, Sep 14 2016 *)
  • PARI
    zp(a,b) = {my(c,c1,s); c = a; c1 = 2*c-2;
    while(c
    				
  • PARI
    a(k)=(2^2^k+1)<<(2^k-1) \\ For k<6. - M. F. Hasler, Jul 27 2016
    

Formula

a(n) = (A019434(n)-1)*A019434(n)/2 for all terms known so far. - M. F. Hasler, Jun 29 2016

A125246 Numbers m whose abundance sigma(m) - 2m = -4. Numbers whose deficiency is 4.

Original entry on oeis.org

5, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752, 15370304, 73995392, 536920064, 2147581952, 34360131584, 27034175140420610, 36028797421617152, 576460753914036224
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

a(17) > 10^12. - Donovan Johnson, Dec 08 2011
a(17) > 10^13. - Giovanni Resta, Mar 29 2013
a(17) <= b(28) = 36028797421617152 ~ 3.6*10^16, since b(k) := 2^(k-1)*(2^k+3) is in this sequence for all k in A057732, i.e., whenever 2^k+3 is prime, and 28 = A057732(11). Further terms of this form are b(30), b(55), b(67), b(84), ... The only terms not of the form b(k), below 10^13, are {110, 884, 18632, 116624, 15370304, 73995392}. - M. F. Hasler, Apr 27 2015, edited on Jul 17 2016
See A191363 for numbers with deficiency 2, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term of this sequence multiplied with a prime p not dividing it is abundant if and only if p < sigma(a(n))/4. For each of a(2..16) there is such a prime, near this limit, such that a(n)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 17 2016
Any term x of this sequence can be combined with any term y of A088832 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is 5 the only odd number in this sequence? Is it possible to prove this? - M. F. Hasler, Feb 22 2017
a(20) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
If m is an even term, then (m-2)/2 is a term of A067680. - Jinyuan Wang, Apr 08 2020

Examples

			The abundance of 5 = (1+5)-10 = -4.
More generally, whenever p = 2^k + 3 is prime (as p = 5 for k = 1), then A(2^(k-1)*p) = (2^k-1)*(p+1) - 2^k*p = 2^k - p - 1 = -4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -4]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - 2 # == -4 &] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-4),print1(n,",")))
    

Extensions

a(11) to a(14) from Klaus Brockhaus, Nov 29 2006
a(15)-a(16) from Donovan Johnson, Dec 23 2008
a(17)-a(19) from Hiroaki Yamanouchi, Aug 21 2018

A101223 Numbers m whose deficiency is 10, or: sigma(m) = 2m - 10.

Original entry on oeis.org

11, 21, 26, 68, 656, 2336, 8768, 133376, 528896, 34360918016, 35184409837568, 576460757135261696
Offset: 1

Views

Author

Vassil K. Tintschev (tinchev(AT)sunhe.jinr.ru), Dec 15 2004

Keywords

Comments

a(13) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
A subsequence of A274556. a(11) <= b(23) = 35184409837568 ~ 3.5*10^13, since b(k) := 2^(k-1)*(2^k+9) is in this sequence for all k in A057196 (2^k+9 is prime). All known terms except a(2) = 21 are of that form. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A223609 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			The divisors of 68 are {1, 2, 4, 17, 34, 68} and so sigma(68) = 1 + 2 + 4 + 17+ 24 + 68 = 126 = 2*68 - 10; thus, the deficiency of 68 is 10 so 68 is a term of the sequence.
		

Crossrefs

Cf. A033879, A033880, A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A125248 (deficiency 16).
Cf. also A274556.
Cf. A223609 (abundance 10).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)) eq 2*n-10]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    Select[ Range[ 85000000], DivisorSigma[1, # ] + 10 == 2# &]

Extensions

Edited and extended by Robert G. Wilson v, Dec 15 2004
a(10) from Donovan Johnson, Dec 23 2008
Edited by M. F. Hasler, Jul 18 2016
a(11)-a(12) from Hiroaki Yamanouchi, Aug 21 2018

A125248 Numbers n whose abundance sigma(n)-2n = -16. Numbers n whose deficiency is 16.

Original entry on oeis.org

17, 38, 92, 170, 248, 752, 988, 2528, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

When p=2^k+15 is prime (cf. A057197), then 2^(k-1)*p is in this sequence. The terms { 17, 38, 92, 248, 752, 2528, 34688, 531968, 2112512, 8419328, 537116672, 2147975168, ...} are of this from, with k in {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, ...} = A057197. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A141547 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			The abundance of 38 = (1+2+19+38)-76 = -16
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (this), A223608 (deficiency 18), A223607 (deficiency 20); A141547 (abundance 16).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -16]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    Select[Range[1, 10^6], DivisorSigma[1, #] - 2 # == - 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-16),print1(n,",")))
    

Extensions

a(17) to a(30) from Klaus Brockhaus, Nov 29 2006

A168415 a(n) = 2^n + 7.

Original entry on oeis.org

8, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031, 2055, 4103, 8199, 16391, 32775, 65543, 131079, 262151, 524295, 1048583, 2097159, 4194311, 8388615, 16777223, 33554439, 67108871, 134217735, 268435463, 536870919, 1073741831, 2147483655
Offset: 0

Views

Author

Vincenzo Librandi, Dec 01 2009

Keywords

Comments

a(n) is prime <=> a(n) is in A104066 <=> n is in A057195 <=> 2^(n-1)*a(n) = A257272(n) is in A125247. - M. F. Hasler, Apr 27 2015

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - 7, n > 1.
G.f.: (8 - 15*x)/((2*x - 1)*(x - 1)). - R. J. Mathar, Jul 10 2011
a(n) = A000079(n) + 7. - Omar E. Pol, Sep 20 2011
E.g.f.: exp(2*x) + 7*exp(x). - G. C. Greubel, Jul 22 2016
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. - Elmo R. Oliveira, Nov 11 2023

A274554 Numbers k such that sigma(k) == 0 (mod k-4).

Original entry on oeis.org

5, 6, 10, 22, 24, 60, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912, 17619844, 2147713024, 6800695312, 34360655872, 549759483904, 1661355408388
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2016

Keywords

Comments

A125247 is a subset of this sequence.

Examples

			sigma(5) (mod 5-4) = 6 (mod 1) = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [5..2*10^6] | SumOfDivisors(n) mod (n-4) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
  • Maple
    q:= k-> is(irem(numtheory[sigma](k), k-4)=0):
    select(q, [$5..400000])[];  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    k = -4; Select[Range[Abs@ k + 1, 10^7], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)

Extensions

a(19)-a(24) from Giovanni Resta, Jul 01 2016

A141549 Numbers k whose deficiency is 12: 2k - sigma(k) = 12.

Original entry on oeis.org

13, 45, 76, 688, 8896, 133888, 537051136, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Keywords

Comments

Numbers n whose abundance is -12. No other terms up to n=100,000,000. - Jason G. Wurtzel, Aug 24 2010
For all k in A102633, the number 2^(k-1)*(2^k+11) is in this sequence. So far all terms except a(2) are of this form. For k = 55, 71, this yields terms 649037107316853651724695645454336, 2787593149816327892704951291908936712585216. - M. F. Hasler, Apr 23 2015; edited by Max Alekseyev, May 27 2025
Any term x = a(m) can be combined with any term y = A141545(n) to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2. Although this property is a necessary condition for two numbers to be amicable, it is not a sufficient one. So far, these two sequences have not produced an amicable pair. However, if one is ever found, then it will exhibit x-y = 12. - Timothy L. Tiffin, Sep 13 2016
a(11) > 10^20. - Max Alekseyev, May 27 2025

Examples

			a(1) = 13, since 2*13 - sigma(13) = 26 - 14 = 12. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141550 (deficiency 14), A125248 (deficiency 16), A223608 (deficiency 18), A223607 (deficiency 20); A141545 (abundance 12).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -12]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n+12,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 12 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1, 10^8, if(((sigma(n)-2*n)==-12), print1(n, ", "))) \\ Jason G. Wurtzel, Aug 24 2010
    

Extensions

a(7) from Donovan Johnson, Dec 08 2011
a(8)-a(9) from Hiroaki Yamanouchi, Aug 21 2018
a(10) from Max Alekseyev, May 27 2025
Showing 1-10 of 20 results. Next