A077374
Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1
sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
- Eric Weisstein's World of Mathematics, Abundance.
-
Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
-
forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))
A088833
Numbers n whose abundance is 8: sigma(n) - 2n = 8.
Original entry on oeis.org
56, 368, 836, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 2087936, 2291936, 13174976, 29465852, 35021696, 45335936, 120888092, 260378492, 381236216, 775397948, 3381872252, 4856970752, 6800228816, 8589344768, 44257207676, 114141404156
Offset: 1
Except first 4 terms of A045770 (1, 7, 10, and 49) are here: abundances = {-1,-6,-2,-41,8,8,8,8,8,8,8,8,8,8,8,8,8}.
A141548
Numbers n whose deficiency is 6.
Original entry on oeis.org
7, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1
a(1) = 7, since 2*7 - sigma(7) = 14 - 8 = 6. - _Timothy L. Tiffin_, Sep 13 2016
- Gianluca Amato, Maximilian Hasler, Giuseppe Melfi, Maurizio Parton, Primitive weird numbers having more than three distinct prime factors, Riv. Mat. Univ. Parma, 7(1), (2016), 153-163, arXiv:1803.00324 [math.NT], 2018.
Cf.
A000203,
A033880,
A005100;
A191363 (deficiency 2),
A125246 (deficiency 4),
A141548 (deficiency 6),
A125247 (deficiency 8),
A101223 (deficiency 10),
A141549 (deficiency 12),
A141550 (deficiency 14),
A125248 (deficiency 16),
A223608 (deficiency 18),
A223607 (deficiency 20).
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -6]; // Vincenzo Librandi, Sep 14 2016
-
lst={};Do[If[n==Plus@@Divisors[n]-n+6,AppendTo[lst,n]],{n,10^4}];Print[lst];
Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 6 &] (* Vincenzo Librandi, Sep 14 2016 *)
-
is(n)=sigma(n)==2*n-6 \\ Charles R Greathouse IV, Apr 23 2015, corrected by M. F. Hasler, Jul 18 2016
A191363
Numbers m such that sigma(m) = 2*m - 2.
Original entry on oeis.org
3, 10, 136, 32896, 2147516416
Offset: 1
For n=1, a(1) = 3 since sigma(3) = 4 = 2*3 - 2.
- Gianluca Amato, Maximilian Hasler, Giuseppe Melfi, and Maurizio Parton, Primitive weird numbers having more than three distinct prime factors, Riv. Mat. Univ. Parma, 7(1), (2016), 153-163, arXiv:1803.00324 [math.NT], 2018.
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -2]; // Vincenzo Librandi, Sep 15 2016
-
ok[n_] := DivisorSigma[1,n] == 2*n-2; Select[ Table[ 2^(2^k-1) * (2^(2^k)+1), {k, 0, 5}], ok] (* Jean-François Alcover, Sep 14 2011, after conjecture *)
Select[Range[10^6], DivisorSigma[1, #] == 2 # - 2 &] (* Michael De Vlieger, Sep 14 2016 *)
-
zp(a,b) = {my(c,c1,s); c = a; c1 = 2*c-2;
while(c
-
a(k)=(2^2^k+1)<<(2^k-1) \\ For k<6. - M. F. Hasler, Jul 27 2016
A125246
Numbers m whose abundance sigma(m) - 2m = -4. Numbers whose deficiency is 4.
Original entry on oeis.org
5, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752, 15370304, 73995392, 536920064, 2147581952, 34360131584, 27034175140420610, 36028797421617152, 576460753914036224
Offset: 1
The abundance of 5 = (1+5)-10 = -4.
More generally, whenever p = 2^k + 3 is prime (as p = 5 for k = 1), then A(2^(k-1)*p) = (2^k-1)*(p+1) - 2^k*p = 2^k - p - 1 = -4.
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -4]; // Vincenzo Librandi, Sep 15 2016
-
Select[Range[10^7], DivisorSigma[1, #] - 2 # == -4 &] (* Michael De Vlieger, Jul 18 2016 *)
-
for(n=1,1000000,if(((sigma(n)-2*n)==-4),print1(n,",")))
A101223
Numbers m whose deficiency is 10, or: sigma(m) = 2m - 10.
Original entry on oeis.org
11, 21, 26, 68, 656, 2336, 8768, 133376, 528896, 34360918016, 35184409837568, 576460757135261696
Offset: 1
Vassil K. Tintschev (tinchev(AT)sunhe.jinr.ru), Dec 15 2004
The divisors of 68 are {1, 2, 4, 17, 34, 68} and so sigma(68) = 1 + 2 + 4 + 17+ 24 + 68 = 126 = 2*68 - 10; thus, the deficiency of 68 is 10 so 68 is a term of the sequence.
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)) eq 2*n-10]; // Vincenzo Librandi, Sep 15 2016
-
Select[ Range[ 85000000], DivisorSigma[1, # ] + 10 == 2# &]
A125248
Numbers n whose abundance sigma(n)-2n = -16. Numbers n whose deficiency is 16.
Original entry on oeis.org
17, 38, 92, 170, 248, 752, 988, 2528, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008
Offset: 1
The abundance of 38 = (1+2+19+38)-76 = -16
- Donovan Johnson, Giovanni Resta and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..69 (terms <= 10^18, first 43 terms from _Donovan Johnson_ and a(44)-a(51) from _Giovanni Resta_)
Cf.
A000203,
A033880,
A005100;
A191363 (deficiency 2),
A125246 (deficiency 4),
A141548 (deficiency 6),
A125247 (deficiency 8),
A101223 (deficiency 10),
A141549 (deficiency 12),
A141550 (deficiency 14),
A125248 (this),
A223608 (deficiency 18),
A223607 (deficiency 20);
A141547 (abundance 16).
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -16]; // Vincenzo Librandi, Sep 14 2016
-
Select[Range[1, 10^6], DivisorSigma[1, #] - 2 # == - 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
-
for(n=1,1000000,if(((sigma(n)-2*n)==-16),print1(n,",")))
A168415
a(n) = 2^n + 7.
Original entry on oeis.org
8, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031, 2055, 4103, 8199, 16391, 32775, 65543, 131079, 262151, 524295, 1048583, 2097159, 4194311, 8388615, 16777223, 33554439, 67108871, 134217735, 268435463, 536870919, 1073741831, 2147483655
Offset: 0
-
[2^n+7: n in [0..40]]; // Vincenzo Librandi, Sep 19 2013
-
a[n_]:=2^n+7; a[Range[0,200]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011*)
CoefficientList[Series[(8 - 15 x)/((2 x - 1) (x - 1)), {x, 0, 200}], x] (* Vincenzo Librandi, Sep 19 2013 *)
LinearRecurrence[{3,-2},{8,9},40] (* Harvey P. Dale, Mar 03 2014 *)
-
a(n)=1<Charles R Greathouse IV, Sep 20 2011
A274554
Numbers k such that sigma(k) == 0 (mod k-4).
Original entry on oeis.org
5, 6, 10, 22, 24, 60, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912, 17619844, 2147713024, 6800695312, 34360655872, 549759483904, 1661355408388
Offset: 1
sigma(5) (mod 5-4) = 6 (mod 1) = 0.
-
[n: n in [5..2*10^6] | SumOfDivisors(n) mod (n-4) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
-
q:= k-> is(irem(numtheory[sigma](k), k-4)=0):
select(q, [$5..400000])[]; # Alois P. Heinz, Jun 14 2025
-
k = -4; Select[Range[Abs@ k + 1, 10^7], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)
A141549
Numbers k whose deficiency is 12: 2k - sigma(k) = 12.
Original entry on oeis.org
13, 45, 76, 688, 8896, 133888, 537051136, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1
a(1) = 13, since 2*13 - sigma(13) = 26 - 14 = 12. - _Timothy L. Tiffin_, Sep 13 2016
Cf.
A000203,
A033880,
A005100;
A191363 (deficiency 2),
A125246 (deficiency 4),
A141548 (deficiency 6),
A125247 (deficiency 8),
A101223 (deficiency 10),
A141550 (deficiency 14),
A125248 (deficiency 16),
A223608 (deficiency 18),
A223607 (deficiency 20);
A141545 (abundance 12).
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -12]; // Vincenzo Librandi, Sep 14 2016
-
lst={};Do[If[n==Plus@@Divisors[n]-n+12,AppendTo[lst,n]],{n,10^4}];Print[lst];
Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 12 &] (* Vincenzo Librandi, Sep 14 2016 *)
-
for(n=1, 10^8, if(((sigma(n)-2*n)==-12), print1(n, ", "))) \\ Jason G. Wurtzel, Aug 24 2010
Showing 1-10 of 20 results.
Comments