cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A077374 Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1

Views

Author

Jason Earls, Nov 30 2002

Keywords

Comments

Apart from {1, 3, 5, 7, 9, 11, 15, 21, 315}, subset of A088012. Probably finite. - Charles R Greathouse IV, Mar 28 2011
a(15) > 10^13. - Giovanni Resta, Mar 29 2013
The abundance of the given terms a(1..14) is: (-1, -2, -4, -6, -5, -10, -6, -10, -6, -6, 6, 6, 6, -6). See also A171929, A188263 and A188597 for numbers with abundancy sigma(n)/n close to 2. - M. F. Hasler, Feb 21 2017
a(15) > 10^22. - Wenjie Fang, Jul 13 2017

Examples

			sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))

Extensions

a(14) from Farideh Firoozbakht, Jan 12 2004

A125247 Numbers n whose abundance sigma(n) - 2n = -8. Numbers n whose deficiency is 8.

Original entry on oeis.org

22, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912, 17619844, 2147713024, 6800695312, 34360655872, 549759483904, 1661355408388, 28502765343364, 82994670582016, 99249696661504, 120646991405056, 431202442356004, 952413274955776
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

a(19) > 10^12. - Donovan Johnson, Dec 08 2011
a(20) > 10^13. - Giovanni Resta, Mar 29 2013
a(30) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
a(20) <= 36028797958488064 ~ 3.6*10^16. Indeed, if k is in A057195 then 2^(k-1)*A168415(k) is in this sequence, and k=28 yields this upper bound for a(20) which is in any case a term of this sequence. - M. F. Hasler, Apr 27 2015
If n is in this sequence and p a prime not dividing n, then np is abundant if and only if p < sigma(n)/8 = n/4-1. For all n=a(k) except {22, 70564, 100804, 17619844}, there is such a p near this limit, such that n*p is a primitive weird number (A002975; in A258882 for the terms mentioned in the preceding comment). - M. F. Hasler, Jul 20 2016
Any term x of this sequence can be combined with any term y of A088833 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is there any odd number in this sequence? Is it possible to prove the contrary? - M. F. Hasler, Feb 22 2017

Examples

			The abundance of 22 = (1+2+11+22)-44 = -8
		

Crossrefs

Cf. A033880, A088833 (abundance 8).

Programs

  • Magma
    [n: n in [1..2*10^7] | (DivisorSigma(1,n)-2*n) eq - 8]; // Vincenzo Librandi, Jul 22 2016
  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] - 2 # == -8 &] (* Michael De Vlieger, Jul 21 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-8),print1(n,",")))
    

Extensions

a(13)-a(15) from Klaus Brockhaus, Nov 29 2006
a(16)-a(17) from Donovan Johnson, Dec 23 2008
a(18) from Donovan Johnson, Dec 08 2011
a(19) from Giovanni Resta, Mar 29 2013
a(20)-a(25) from Hiroaki Yamanouchi, Aug 21 2018

A181598 Numbers m with divisor 8 | m and abundance sigma(m)-2*m = 8.

Original entry on oeis.org

56, 368, 11096, 17816, 77744, 128768, 2087936, 2291936, 13174976, 35021696, 45335936, 381236216, 4856970752, 6800228816, 8589344768, 1461083549696, 1471763808896, 2199013818368, 19502341651712, 118123076415296, 933386556194816, 144141575952121856, 417857739454939136
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

a(19) > 10^13. - Giovanni Resta, Apr 02 2014

Crossrefs

Programs

  • PARI
    isok(n) = !(n % 8) && (sigma(n) - 2*n == 8); \\ Michel Marcus, Feb 08 2016

Formula

A088833 INTERSECT A008590. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased by R. J. Mathar, Nov 04 2010
a(16)-a(17) from Donovan Johnson, Dec 08 2011
a(18) from Giovanni Resta, Apr 02 2014
a(19)-a(23) from the b-file at A088833 added by Amiram Eldar, Mar 11 2024

A274566 Numbers k such that sigma(k) == 0 (mod k-10).

Original entry on oeis.org

6, 9, 11, 12, 14, 22, 40, 42, 46, 154, 190, 2656, 6490, 44650, 318250, 1360810, 1503370, 1788490, 3214090, 103712410, 3915380170, 6077111050, 9796360330, 10828121356, 33086522327050, 35966517350410, 11577093570201610, 16726040141635450, 576460762503970816
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(11) mod (11 - 10) = 12 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | n ne 10 and SumOfDivisors(n) mod (n-10) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
    
  • Mathematica
    k = -10; Select[Range[1, 10^7], # + k != 0 && Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)
  • PARI
    isok(k) = (k!=10) && !(Mod(sigma(k), k-10)); \\ Michel Marcus, May 30 2025

Extensions

a(19)-a(24) from Giovanni Resta, Jul 06 2016
a(25)-a(26) from Jud McCranie, Dec 02 2019
Terms 6,9 inserted and a(27)-a(29) added by Max Alekseyev, May 30 2025

A258885 Primitive weird numbers (A002975) having 6 distinct prime factors.

Original entry on oeis.org

1550860550, 44257207676, 66072609790
Offset: 1

Views

Author

Keywords

Comments

a(4) <= 5976833582079328 = 2^5*181*197*353*431*34429 and a(5) <= 48083019473926272314825065088 = 2^7*257*97213*97973*100957*1520132521 that is certainly in this sequence. - Giuseppe Melfi, Oct 26 2015
a(4) <= 125258675788784 = 2^4 * 47 * 149 * 353 * 1307 * 2423. - M. F. Hasler, Jul 12 2016

Examples

			a(1) = 1550860550 = 2 * 5^2 * 29 * 37 * 137 * 211 = A273815(1). (Abundance = 20)
a(2) = 44257207676 = 2^2 * 11 * 37 * 59 * 523 * 881. (Abundance = 8, cf. A088833)
a(3) = 66072609790 = 2 * 5 * 11 * 127^2 * 167 * 223 = A273815(3). (Abundance = 4, cf. A088832)
		

Crossrefs

Programs

  • Mathematica
    (* copy the terms from A002975, assign them to 'lst' and then *)
    Select[ lst, PrimeNu@# == 6 &]
  • PARI
    select(w->omega(w)==6, A002975) \\ Assuming that A002975 is defined as set or vector. - M. F. Hasler, Jul 12 2016

Extensions

One more term added and definition corrected by Giuseppe Melfi, Nov 02 2015

A274553 Numbers k such that sigma(k) == 0 (mod k+4).

Original entry on oeis.org

9, 56, 368, 780, 836, 2352, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 430272, 2087936, 2291936, 13174976, 29465852, 35021696, 45335936, 120888092, 184773312, 260378492, 381236216, 775397948, 3381872252, 4856970752, 6800228816, 8589344768, 44257207676, 114141404156, 1461083549696, 1471763808896, 2199013818368
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2016

Keywords

Examples

			sigma(9) mod 9+4 = 13 mod 13 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | SumOfDivisors(n) mod (n+4) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
  • Mathematica
    k = 4; Select[Range[Abs@ k + 1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)

Extensions

a(18)-a(35) from Giovanni Resta

A274557 Numbers k such that sigma(k) == 0 (mod k+6).

Original entry on oeis.org

6, 24, 25, 30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 304, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(6) mod (6+6) = 12 mod 12 = 0.
		

Crossrefs

Programs

A274562 Numbers k such that sigma(k) == 0 (mod k-8).

Original entry on oeis.org

5, 6, 7, 9, 10, 11, 12, 14, 17, 38, 92, 168, 170, 248, 752, 988, 2528, 2808, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008, 173631608, 293947648, 537116672, 883927808, 2147975168, 2493705728, 5556840416, 13092865928, 42783299288, 69662739968, 80999455688, 217898810368, 546409576448, 1020401174528, 1081071376208, 1282330216448, 1473186024448, 1577975316488, 1608005456768
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(9) mod (9 - 8) = 13 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6], # - 8 != 0 && Mod[DivisorSigma[1, #], # - 8] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(33)-a(59) from Giovanni Resta, Jul 05 2016
Terms 5,6,7 inserted by Max Alekseyev, Jun 04 2025

A274558 Numbers k such that sigma(k) == 0 (mod k-6).

Original entry on oeis.org

5, 7, 13, 14, 20, 30, 45, 76, 630, 688, 2310, 8896, 133888, 537051136, 1631268870, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Comments

Contains terms of A141549, odd terms of A141548 multiplied by 2, and 6 times terms of A191363 coprime to 6. - Max Alekseyev, May 25 2025

Examples

			sigma(7) mod (7-6) = 8 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7, 10^6],  # - 6 != 0 && Mod[DivisorSigma[1, #], # - 6] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(14)-a(15) from Giovanni Resta
Term 5 inserted, a(16)-a(18) added by Max Alekseyev, Jun 04 2025

A274560 Numbers k such that sigma(k) == 0 (mod k-7).

Original entry on oeis.org

3, 5, 6, 8, 10, 11, 15, 27, 34, 72, 232, 34432, 549762629632
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8-7) = 15 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6], Mod[DivisorSigma[1, #], # - 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(13) from Giovanni Resta
Terms 3,5,6 inserted by Max Alekseyev, May 29 2025
Showing 1-10 of 24 results. Next