cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055615 a(n) = n * mu(n), where mu is the Möbius function A008683.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0
Offset: 1

Views

Author

Michael Somos, Jun 04 2000

Keywords

Comments

Dirichlet inverse of n (A000027).
Absolute values give n if n is squarefree, otherwise 0.
a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005
a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005
Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013

Examples

			G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
		

Crossrefs

Moebius transform of A023900.
Cf. A000027 (Dirichlet inverse), A061669 (sum with it).
Cf. A062004.
Cf. A013929 (positions of 0's), A068340 (partial sums), A261869 (first differences), A261890 (second differences).

Programs

  • Haskell
    a055615 n = a008683 n * n  -- Reinhard Zumkeller, Sep 04 2015
    
  • Magma
    [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    Table[n MoebiusMu[n], {n,80}] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    {a(n) = if( n<1, 0, n * moebius(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
    
  • Python
    from sympy import mobius
    def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
  • SageMath
    [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
    

Formula

a(n) = n * A008683(n).
Dirichlet g.f.: 1/zeta(s-1).
Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003
Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004
Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2. - Amiram Eldar, Feb 02 2024

A261869 First differences of A055615.

Original entry on oeis.org

-3, -1, 3, -5, 11, -13, 7, 0, 10, -21, 11, -13, 27, 1, -15, -17, 17, -19, 19, 21, 1, -45, 23, 0, 26, -26, 0, -29, -1, -1, 31, 33, 1, 1, -35, -37, 75, 1, -39, -41, -1, -1, 43, 0, 46, -93, 47, 0, 0, 51, -51, -53, 53, 55, -55, 57, 1, -117, 59, -61, 123, -62, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 04 2015

Keywords

Comments

a(n) = (n+1)*mu(n+1) - n*mu(n), where mu = A008683 (Moebius function);
a(A068781(n)) = 0;
abs(a(n)) <= 2*n + 1.

Crossrefs

Cf. A008683, A055615, A068781, A261890 (first differences).

Programs

  • Haskell
    import Data.List (genericIndex)
    a261869 n = genericIndex a261869_list (n - 1)
    a261869_list = zipWith (-) (tail a055615_list) a055615_list
  • Mathematica
    #[[2]]-#[[1]]&/@Partition[Table[n*MoebiusMu[n],{n,70}],2,1] (* Harvey P. Dale, Apr 17 2016 *)

A114180 Numbers n with mu(n) = mu(n+1) = mu(n+2).

Original entry on oeis.org

29, 33, 41, 48, 85, 93, 98, 101, 124, 137, 141, 201, 213, 217, 229, 242, 243, 281, 301, 342, 350, 393, 423, 429, 433, 445, 475, 548, 603, 617, 633, 641, 645, 697, 724, 741, 774, 821, 844, 845, 846, 869, 921, 969, 1021, 1024, 1041, 1085, 1129, 1137, 1189
Offset: 1

Views

Author

Keywords

Comments

Any sequence of 4 or more consecutive numbers with the same value for mu must all have mu(n)=0 (n divisible by a proper square) since at least one of every 4 consecutive numbers is divisible by 4.
A261890(a(n)) = 0. - Reinhard Zumkeller, Sep 05 2015

Examples

			mu(n)=1 for 33,34,35; 85,86,87; 93,94,95; ...
mu(n)=-1 for 29,30,31; 41,42,43; 101,102,103; ...
mu(n)=0 for 48,49,50; 98,99,100; 124,125,126; ...
		

Crossrefs

Union of A070258, A063838 and A070268. Cf. A008683, A070284.
Cf. A261890.

Programs

  • Haskell
    a114180 n = a114180_list !! (n-1)
    a114180_list = filter ((== 0) . a261890) [1..]
    -- Reinhard Zumkeller, Sep 05 2015
  • Mathematica
    SequencePosition[MoebiusMu[Range[1200]],{x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Jul 23 2023 *)
Showing 1-3 of 3 results.