A265332 a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.
1, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4
Offset: 1
Keywords
Examples
Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree: -- 1 Q_0 = (1) | _2__ Q_1 = (2) / \ _3 __4_____ Q_2 = (1,3) / / | \ _5 _6 _7 __8___________ Q_3 = (1,1,2,4) / / / | / | \ \ _9 10 11 12 13 14 15___ 16_________ Q_4 = (1,1,1,2,1,2,3,5) / / / / | / / | |\ \ | \ \ \ \ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 -- The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
- T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
Crossrefs
Programs
-
Mathematica
terms = 120; h[1] = 1; h[2] = 1; h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]]; seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]]; seq[nmax = 2 terms]; seq[nmax += terms]; While[seq[nmax] != seq[nmax - terms], nmax += terms]; seq[nmax] (* Jean-François Alcover, Dec 19 2021 *)
-
Scheme
(define (A265332 n) (if (= 1 n) 1 (A051135 n)))
Formula
a(1) = 1; for n > 1, a(n) = A051135(n).
Comments