cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000681 Number of n X n matrices with nonnegative entries and every row and column sum 2.

Original entry on oeis.org

1, 1, 3, 21, 282, 6210, 202410, 9135630, 545007960, 41514583320, 3930730108200, 452785322266200, 62347376347779600, 10112899541133589200, 1908371363842760216400, 414517594539154672566000, 102681435747106627787376000, 28772944645196614863048048000
Offset: 0

Views

Author

Keywords

Comments

Or, number of labeled 2-regular pseudodigraphs (multiple arcs and loops allowed) of order n.
Also, number of permutations of the multiset {1^2,2^2,...,n^2} with the descent set consisting of multiples of 2. - Max Alekseyev, Apr 28 2014

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 282*x^4 + 6210*x^5 + 202410*x^6 + 9135630*x^7 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, #25, a_n.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, section 3.5.10.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (a).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
  • C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.

Crossrefs

Column k=2 of A257493.
Row sums of A269742 and A307804.
Row and column sums equal s: A000142 (s=1), A001500 (s=3), A172806 (s=4), A172862 (s=5), A172894 (s=6), A172919 (s=7), A172944 (s=8), A172958 (s=9).

Programs

  • Maple
    A000681 := proc(n)
        coeftayl( exp(x/2)/sqrt(1-x),x=0,n) ;
        %*(n!)^2 ;
    end proc:
    seq(A000681(n),n=0..10) ; # R. J. Mathar, May 01 2019
  • Mathematica
    a[n_] := Sum[ ((2*i)!*n!^2) / (2^i*(i!^2*(n - i)!)), {i, 0, n}]/2^n; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 08 2011 *)
    a[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 08 2012 *)
  • PARI
    Vec( serlaplace(serlaplace( exp(x/2)/sqrt(1-x) )) ) /* Max Alekseyev, Apr 28 2014 */
  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    def a(n): return IntegerMatrices([2]*n, [2]*n).cardinality() # Ralf Stephan, Mar 02 2014
    

Formula

Sum_{n >= 0} a(n) x^n / n!^2 = exp(x/2) / sqrt(1-x).
D-finite with recurrence a(n) = n^2*a(n-1) - (1/2)*n*(n-1)^2*a(n-2).
a(n) is asymptotic to c/sqrt(n)*(n!)^2 where c=0.93019... - Benoit Cloitre, Jun 25 2004
a(n) = sum(i=0..n, 2^(i-2*n) * C(n, i)^2 * (2*n-2*i)! * i! ).
a(n) = 2^(-n) * sum(i=0..n, ((n!)^2*(2*i)!) / ((i!)^2*((n-i)!*2^i)) ). - Shanzhen Gao, Nov 05 2007
In Cloitre's formula is c = exp(1/2)/sqrt(Pi) = 0.9301913671026328586. - Vaclav Kotesovec, Aug 12 2013
With c as used above by Cloitre and Kotesovec, a(n) is asymptotic to c/sqrt(n)*(n!)^2 * (1 + 2/(16*n) + 50/(16*n)^2 + 1100/(16*n)^3 + 32438/(16*n)^4 + 1185660/(16*n)^5 + 50498228/(16*n)^6 + 2438464600/(16*n)^7 + 131323987366/(16*n)^8 + 7782036656108/(16*n)^9 + 501905392385436/(16*n)^10 + ...). - Jon E. Schoenfield, Mar 03 2014
E.g.f.: 2/((2-x)*W(0)), where W(k) = 1 - (2*k+1)*x/(2-x-2*(k+1)*x/W(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2014

Extensions

More terms from David W. Wilson

A260585 Number of ways to place 2n rooks on an n X n board, with 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 2 rooks below the main diagonal.

Original entry on oeis.org

1, 11, 72, 367, 1630, 6680, 26082, 98870, 368045, 1354850, 4953503, 18035279, 65499031, 237511321, 860471110, 3115667369, 11277816388, 40814611818, 147692103728, 534404499040, 1933597628291, 6996040095316, 25312367524557, 91581960107817, 331348634005165
Offset: 2

Views

Author

Jeffrey Davis, Jul 29 2015

Keywords

Comments

a(n) is the number of minimal multiplex juggling patterns of period n using exactly 2 balls when we can catch/throw up to 2 balls at a time. (Minimal in the sense that each of the n throws is between 0 and n-1.)

Crossrefs

Column k=2 of A269742.

Programs

  • Mathematica
    CoefficientList[Series[-(5*x^4 - 3*x^3 - x^2 - x + 1)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 16 2015 *)
  • PARI
    Vec(-(5*x^6 - 3*x^5 - x^4 - x^3 + x^2)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1) + O(x^40)) \\ Michel Marcus, Aug 17 2015

Formula

G.f.: -x^2*(5*x^4-3*x^3-x^2-x+1)/((1-5*x+5*x^2)*(2*x-1)^2*(x-1)^3).
a(n) = 12*a(n-1) - 59*a(n-2) + 155*a(n-3) - 236*a(n-4) + 209*a(n-5) - 100*a(n-6) + 20*a(n-7). - Wesley Ivan Hurt, Jan 01 2024
a(n) = (n+2)*(n-1)/2-2^n*(1+3*n/2)+2*A030191(n)-5*A030191(n-1). - R. J. Mathar, Aug 26 2025

A260575 Number of ways to place 2n rooks on n X n board, 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 3 rooks below the main diagonal.

Original entry on oeis.org

4, 114, 1492, 13992, 109538, 769632, 5050616, 31702275, 193204684, 1154354559, 6805263818, 39756392269, 230829718918, 1334626765852, 7694795830792, 44279453377166, 254475676808510, 1461211112505546, 8385454709982584, 48102877501302765, 275868835046218560
Offset: 3

Views

Author

Steve Butler, Jul 29 2015

Keywords

Comments

a(n) is the number of minimal multiplex juggling patterns of period n using exactly 3 balls when we can catch/throw up to 2 balls at a time. (Minimal in the sense that the throws are between 0 and n-1.)

Crossrefs

Column k=3 of A269742.

Programs

  • Mathematica
    Rest[Rest[Rest[CoefficientList[Series[-(625 x^12 - 2206 x^11 + 4397 x^10 - 6648 x^9 + 7058 x^8 - 4674 x^7 + 1748 x^6 - 300 x^5 + 2 x^4 + 4 x^3)/(2600 x^13 - 21100 x^12 + 77590 x^11 - 171025 x^10 + 251874 x^9 - 261466 x^8 + 196626 x^7 - 108337 x^6 + 43682 x^5 - 12713 x^4 + 2592 x^3 - 350 x^2 + 28 x - 1), {x, 0, 33}], x]]]] (* Vincenzo Librandi, Jul 30 2015 *)

Formula

G.f.: -(625*x^12 - 2206*x^11 + 4397*x^10 - 6648*x^9 + 7058*x^8 - 4674*x^7 + 1748*x^6 - 300*x^5 + 2*x^4 + 4*x^3)/(2600*x^13 - 21100*x^12 + 77590*x^11 - 171025*x^10 + 251874*x^9 - 261466*x^8 + 196626*x^7 - 108337*x^6 + 43682*x^5 - 12713*x^4 + 2592*x^3 - 350*x^2 + 28*x - 1).

A260582 Number of ways to place 2n rooks on n X n board, 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 4 rooks below the main diagonal.

Original entry on oeis.org

1, 72, 2438, 48965, 727982, 9002669, 98831244, 1001534339, 9604385112, 88600727292, 795108048465, 6995452987296, 60672964077315, 520801298224219, 4436874672072459, 37592602817393616, 317246106027904761, 2669508900483670024, 22415690107381454687
Offset: 3

Views

Author

Scarlitte Ponce, Jul 29 2015

Keywords

Comments

a(n) is the number of minimal multiplex juggling patterns of period n using exactly 4 balls when we can catch/throw up to 2 balls at a time. (Minimal in the sense that the number of throws is between 0 and n-1.)

Crossrefs

Column k=4 of A269742.

Programs

  • Mathematica
    CoefficientList[Series[-(4584825 x^18 - 32402639 x^17 + 116197885 x^16 - 276109240 x^15 + 466638686 x^14 - 565360388 x^13 + 479478061 x^12 - 263101580 x^11 + 64737485 x^10 + 27721713 x^9 - 36043190 x^8 + 18319939 x^7 - 5637417 x^6 + 1094626 x^5 - 124221 x^4 + 5875 x^3 + 171 x^2 - 14 x - 1)/(19266000 x^22 - 234624000 x^21 + 1345258600 x^20 - 4829459800 x^19 + 12177772645 x^18 - 22934336190  x^17 + 33487611783 x^16 - 38844575208 x^15 + 36384232939 x^14 - 27820436326 x^13 + 17485343731 x^12 - 9066508172 x^11 + 3881838842 x^10 - 1369857572 x^9 + 396588486 x^8 - 93458208 x^7 + 17715207 x^6 - 2654590 x^5 + 306583 x^4 - 26260 x^3 + 1567 x^2 - 58 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 19 2015 *)

Formula

G.f.: -(4584825*x^21 - 32402639*x^20 + 116197885*x^19 - 276109240*x^18 + 466638686*x^17 - 565360388*x^16 + 479478061*x^15 - 263101580*x^14 + 64737485*x^13 + 27721713*x^12 - 36043190*x^11 + 18319939*x^10 - 5637417*x^9 + 1094626*x^8 - 124221*x^7 + 5875*x^6 + 171*x^5 - 14*x^4 - x^3)/(19266000*x^22 - 234624000*x^21 + 1345258600*x^20 - 4829459800*x^19 + 12177772645*x^18 - 22934336190*x^17 + 33487611783*x^16 - 38844575208*x^15 + 36384232939*x^14 - 27820436326*x^13 + 17485343731*x^12 - 9066508172*x^11 + 3881838842*x^10 - 1369857572*x^9 + 396588486*x^8 - 93458208*x^7 + 17715207*x^6 - 2654590*x^5 + 306583*x^4 - 26260*x^3 + 1567*x^2 - 58*x + 1).

A269743 Triangle of generalized Eulerian numbers T(n,k) = _3 read by rows, n >= 1, 0 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 11, 23, 11, 4, 1, 1, 11, 72, 325, 595, 595, 325, 72, 11, 1, 1, 26, 367, 3368, 14679, 34679, 46800, 34679, 14679, 3368, 367, 26, 1, 1, 57, 1630, 28819, 253247, 1212440, 3382133, 5588593, 5588593, 3382133, 1212440, 253247, 28819, 1630, 57, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 16 2016

Keywords

Comments

T(n,k) is the number of nonnegative integer n X n matrices with every row and column sum 3 and sum of entries below the main diagonal k. The case when every row and column sum is 1 is given by the Eulerian numbers (A008292). - Andrew Howroyd, Feb 22 2020

Examples

			Triangle begins:
1,
1,1,1,1,
1,4,11,23,11,4,1,
1,11,72,325,595,595,325,72,11,1,
...
		

Crossrefs

Row sums are A001500.
Columns k=0..4 are A000012, A000295, A260585, A260727, A260583.

Programs

Extensions

Terms a(23) and beyond from Andrew Howroyd, Feb 22 2020

A332729 Number of nonnegative integer n X n matrices with row and column sums 2 and sum of entries below the main diagonal n - 1.

Original entry on oeis.org

1, 1, 11, 114, 2438, 73120, 3107640, 175157568, 12683256458, 1146644890542, 126603925984322, 16764298017398342, 2622239904802101734, 478350006311298468126, 100655530463934465864626, 24200010145455307873369888, 6592700960401481917596215614, 2020180735699844322843722782402
Offset: 1

Views

Author

Andrew Howroyd, Feb 22 2020

Keywords

Examples

			The a(2) = 1 matrix is:
   [1 1]
   [1 1]
		

Crossrefs

Central coefficients of A269742.

Programs

Showing 1-6 of 6 results.