A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 38, 38, 16, 1, 1, 32, 125, 184, 125, 32, 1, 1, 64, 414, 976, 976, 414, 64, 1, 1, 128, 1369, 5382, 8512, 5382, 1369, 128, 1, 1, 256, 4522, 29739, 79384, 79384, 29739, 4522, 256, 1, 1, 512, 14934, 163496, 752061, 1262816, 752061, 163496, 14934, 512, 1
Offset: 1
Examples
The start of the sequence as table: * 1 1 1 1 1 1 1 ... * 1 2 4 8 16 32 64 ... * 1 4 12 38 125 414 1369 ... * 1 8 38 184 976 5382 29739 ... * 1 16 125 976 8512 79384 752061 ... * 1 32 414 5382 79384 1262816 20562673 ... * 1 64 1369 29739 752061 20562673 575780564 ...
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..378
- Steven R. Finch, Self-Avoiding Walks of a Rook on a Chessboard [From Steven Finch, Apr 20 2019]
- Steven R. Finch, Self-Avoiding Walks of a Rook [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
- Steven R. Finch, Table of Non-Overlapping Rook Paths [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
Crossrefs
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A064298(n, k): if n == 1 or k == 1: return 1 universe = tl.grid(n - 1, k - 1) GraphSet.set_universe(universe) start, goal = 1, k * n paths = GraphSet.paths(start, goal) return paths.len() print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)]) # Seiichi Manyama, Apr 06 2020
Comments