A052012 Number of primes between successive Lucas numbers.
1, 0, 1, 0, 2, 2, 4, 6, 9, 15, 20, 31, 48, 72, 110, 170, 257, 400, 608, 950, 1448, 2256, 3487, 5413, 8440, 13118, 20478, 31932, 49995, 78222, 122553, 192262, 301826, 474039, 745772, 1173270, 1848000, 2912623, 4593723, 7249438, 11448047
Offset: 1
Examples
Between L(7)=29 and L(8)=47 we find the following primes: 31, 37, 41 and 43 hence a(7)=4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Haskell
a052012 n = a052012_list !! (n-1) a052012_list = c 1 0 $ tail a000204_list where c x y ls'@(l:ls) | x < l = c (x+1) (y + a010051 x) ls' | otherwise = y : c (x+1) 0 ls -- Reinhard Zumkeller, Dec 18 2011
-
Mathematica
PrimePi[Last[#]-1]-PrimePi[First[#]]&/@Partition[LucasL[ Range[45]],2,1] (* Harvey P. Dale, Jun 28 2011 *)
Formula
a(n) = pi(L(n + 1) - 1) - pi(L(n)), where pi is the prime counting function (A000720) and L = A000032. - Wesley Ivan Hurt, Nov 09 2023
a(n) = A277062(n+1) - A277062(n) - [n+1 in A001606], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024