cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A354436 a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.

Original entry on oeis.org

1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0

Views

Author

Seiichi Manyama, May 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
    
  • Python
    from math import factorial
    def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)).
a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022
a(n) = Sum_{k=0..n} (n-k)^k*k!*binomial(n,k). - Ridouane Oudra, Jun 17 2025

A332408 a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.

Original entry on oeis.org

1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022

Formula

G.f.: Sum_{k>=0} k! * k^k * x^k / (1 - k*x)^(k+1).
a(n) = n! * Sum_{k=0..n} k^n / (n-k)!.
a(n) ~ c * n! * n^n, where c = A073229 = exp(exp(-1)). - Vaclav Kotesovec, Feb 20 2021
E.g.f.: Sum_{k>=0} (k*x*exp(x))^k. - Seiichi Manyama, Feb 19 2022

A319392 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*k!*n^k.

Original entry on oeis.org

1, 0, 5, 116, 4785, 307024, 28435285, 3598112580, 596971515329, 125802906617600, 32834740225688901, 10399056510149276980, 3929349957207906673585, 1746371472945523953503376, 901944505258819679842017365, 535692457387043907059336566724, 362573376628272441934460817960705
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2018

Keywords

Crossrefs

Main diagonal of A320032.

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, 1, k*n*b(n-1, k)+(-1)^n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, May 07 2020
  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! n^k, {k, 0, n}], {n, 16}]]
    Table[n! SeriesCoefficient[Exp[-x]/(1 - n x), {x, 0, n}], {n, 0, 16}]
    Table[(-1)^n HypergeometricPFQ[{1, -n}, {}, n], {n, 0, 16}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*k!*n^k); \\ Michel Marcus, Sep 18 2018

Formula

a(n) = n! * [x^n] exp(-x)/(1 - n*x).
a(n) = exp(-1/n)*n^n*Gamma(n+1,-1/n) for n > 0, where Gamma(a,x) is the incomplete gamma function.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Jun 09 2019

A320031 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
  1,    1,     1,      1,       1,       1,  ...
  1,    2,     3,      4,       5,       6,  ...
  1,    5,    13,     25,      41,      61,  ...
  1,   16,    79,    226,     493,     916,  ...
  1,   65,   633,   2713,    7889,   18321,  ...
  1,  326,  6331,  40696,  157781,  458026,  ...
		

Crossrefs

Columns k=0..6 give A000012, A000522, A010844, A010845, A056545, A056546, A056547.
Main diagonal gives A277452.

Programs

  • Maple
    A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
    for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
    # second Maple program:
    A:= proc(n, k) option remember;
          1 + `if`(n>0, k*n*A(n-1, k), 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 09 2020
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(x)/(1 - k*x).
A(n,k) = Sum_{j=0..n} binomial(n,j)*j!*k^j.
A(n,k) = hypergeom_2F0([1, -n], [], -k).
A(n,k) = 1 + [n > 0] * k * n * A(n-1,k). - Alois P. Heinz, May 09 2020
A(n,k) = floor(n!*k^n*exp(1/k)), k > 0, n + k > 1. - Peter McNair, Dec 20 2021
From Werner Schulte, Apr 14 2024: (Start)
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371898, i.e., A(n, k) = Sum_{i=0..k} binomial(k, i) * A371898(n, i).
Conjecture: E.g.f. of row n is exp(x) * (Sum_{k=0..n} A371898(n, k) * x^k / k!). (End)

A330260 a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
    

Formula

a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselI(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A277453 a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * n^k * k!.

Original entry on oeis.org

1, 3, 41, 1531, 111393, 13262051, 2336744233, 570621092091, 184341785557121, 76092709735150723, 39064090158380196201, 24408768326642565035963, 18237590837527919131499041, 16056004231253610384348995811, 16448689708899063469247204152553
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n, k]*2^k*n^k*k!, {k, 0, n}], {n, 1, 20}]}]

Formula

a(n) = exp(1/(2*n)) * 2^n * n^n * Gamma(n+1, 1/(2*n)).
a(n) ~ 2^n * n^n * n!.
Showing 1-6 of 6 results.