A354436
a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.
Original entry on oeis.org
1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
-
from math import factorial
def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022
A332408
a(n) = Sum_{k=0..n} binomial(n,k) * k! * k^n.
Original entry on oeis.org
1, 1, 10, 213, 8284, 513105, 46406286, 5772636373, 945492503320, 197253667623681, 51069324556151290, 16067283861476491941, 6037615013420387657844, 2670812587802323522405393, 1373842484756310928089102022, 813119045938378747809030359445
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] k! k^n, {k, 0, n}], {n, 1, 15}]]
-
a(n) = sum(k=0, n, binomial(n,k) * k! * k^n); \\ Michel Marcus, Apr 24 2020
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x*exp(x))^k))) \\ Seiichi Manyama, Feb 19 2022
A319392
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*k!*n^k.
Original entry on oeis.org
1, 0, 5, 116, 4785, 307024, 28435285, 3598112580, 596971515329, 125802906617600, 32834740225688901, 10399056510149276980, 3929349957207906673585, 1746371472945523953503376, 901944505258819679842017365, 535692457387043907059336566724, 362573376628272441934460817960705
Offset: 0
-
b:= proc(n, k) option remember;
`if`(n=0, 1, k*n*b(n-1, k)+(-1)^n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, May 07 2020
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! n^k, {k, 0, n}], {n, 16}]]
Table[n! SeriesCoefficient[Exp[-x]/(1 - n x), {x, 0, n}], {n, 0, 16}]
Table[(-1)^n HypergeometricPFQ[{1, -n}, {}, n], {n, 0, 16}]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*k!*n^k); \\ Michel Marcus, Sep 18 2018
A320031
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 16, 79, 226, 493, 916, ...
1, 65, 633, 2713, 7889, 18321, ...
1, 326, 6331, 40696, 157781, 458026, ...
-
A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
# second Maple program:
A:= proc(n, k) option remember;
1 + `if`(n>0, k*n*A(n-1, k), 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, May 09 2020
-
Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A330260
a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0
-
[Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
-
a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
A277453
a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * n^k * k!.
Original entry on oeis.org
1, 3, 41, 1531, 111393, 13262051, 2336744233, 570621092091, 184341785557121, 76092709735150723, 39064090158380196201, 24408768326642565035963, 18237590837527919131499041, 16056004231253610384348995811, 16448689708899063469247204152553
Offset: 0
-
Flatten[{1, Table[Sum[Binomial[n, k]*2^k*n^k*k!, {k, 0, n}], {n, 1, 20}]}]
Showing 1-6 of 6 results.