cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A183010 a(n) = 24*n - 1.

Original entry on oeis.org

-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
Offset: 0

Views

Author

Omar E. Pol, Jan 21 2011

Keywords

Comments

a(n) is also the denominator of the finite algebraic formula for the number of partitions of n, if n >= 1. The formula is p(n) = Tr(n)/(24*n - 1), n >= 1. See theorem 1.1 of the Bruinier-Ono paper in the link. For the numerators see A183011.
It appears that a(n) is also the denominator of the coefficient of the third term in the n-th Bruinier-Ono "partition polynomial" H_n(x). See the Bruinier-Ono paper, chapter 5 "Examples". For the numerators see A183007. - Omar E. Pol, Jul 13 2011
Also exponents in the formula q^(-1) + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 11*q^143 + 15*q^167 + ... in which the coefficients are the partition numbers (see A000041, Example section). - Omar E. Pol, Feb 27 2013

Examples

			G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
		

Crossrefs

Cf. A000041, A000203, A008606, A134517 (subset of primes), A183009, A183011, A187206, A280097 (sum of divisors), A280098.
Cf. A008594.

Programs

Formula

a(n) = A008606(n) - 1.
a(1)=23, a(2)=47, a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 23 2011
a(n) = A183011(n)/A000041(n). - Omar E. Pol, Jul 14 2011
24 * A280098(n) = A000203(a(n)) if n>0. - Michael Somos, Dec 25 2016
E.g.f.: (24*x-1)*exp(x). - G. C. Greubel, Aug 14 2018
G.f.: (-1 + 25*x)/(1-x)^2. - Wolfdieter Lang, Dec 10 2021
a(n) = 2*A008594(n) - 1. - Leo Tavares, Jun 06 2023

A280097 Sum of the divisors of 24*n - 1.

Original entry on oeis.org

24, 48, 72, 120, 144, 168, 168, 192, 264, 240, 264, 336, 312, 408, 360, 384, 456, 432, 672, 480, 504, 576, 600, 744, 600, 720, 648, 744, 840, 720, 744, 840, 912, 984, 840, 864, 888, 912, 1296, 1104, 984, 1080, 1032, 1272, 1176, 1104, 1368, 1152, 1488, 1320, 1224, 1320, 1344, 1824, 1320
Offset: 1

Views

Author

Omar E. Pol, Dec 25 2016

Keywords

Comments

All terms are multiples of 24 [Gupta, Sierpinski]. - Vincenzo Librandi, Apr 07 2011
Note that 24n - 1 is also the denominator of the Bruinier-Ono finite algebraic formula for the number of partitions of n (Cf. A183010).

Examples

			For n = 5 we have that 24*5 - 1 = 119, and the sum of the divisors of 119 is 1 + 7 + 17 + 119 = 144, so a(5) = 144.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,24*Range[60]-1] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    a(n) = sigma(24*n - 1); \\ Amiram Eldar, Jan 09 2025

Formula

a(n) = A000203(A183010(n)).
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 4*Pi^2/3 = 13.159472... . - Amiram Eldar, Mar 28 2024

A291900 Sum of the divisors of 24*n - 1, divided by 24, minus n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 9, 0, 0, 2, 2, 7, 0, 4, 0, 3, 6, 0, 0, 3, 5, 7, 0, 0, 0, 0, 15, 6, 0, 3, 0, 9, 4, 0, 10, 0, 13, 5, 0, 3, 3, 22, 0, 4, 0, 5, 12, 0, 19, 0, 0, 13, 0, 0, 0, 10, 14, 4, 6, 7, 5, 19, 11, 0, 0, 0, 16, 5, 4, 12, 8, 28, 0, 0, 0, 0, 35, 6, 4, 0, 5, 32, 4, 18, 8, 0, 31, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 02 2017

Keywords

Comments

The indices of the zeros give A131210.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 24 n - 1]/24 - n; Array[a, 90] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    a(n) = sigma(24*n-1)/24 - n; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = sigma(24*n-1)/24 - n = A000203(A183010(n))/24 - n = A280097(n)/24 - n = A280098(n) - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A295012 a(n) = sigma(12n - 1)/12, where sigma = sum of divisors (A000203).

Original entry on oeis.org

1, 2, 4, 4, 5, 6, 7, 10, 9, 12, 11, 14, 16, 14, 15, 16, 20, 22, 19, 20, 21, 22, 31, 28, 28, 26, 30, 34, 29, 30, 36, 32, 40, 38, 35, 36, 37, 56, 39, 40, 41, 42, 52, 48, 57, 50, 47, 62, 49, 50, 56, 60, 64, 54, 55, 62, 57, 70, 68, 60, 66, 62, 76, 70, 70, 76
Offset: 1

Views

Author

M. F. Hasler, Dec 08 2017

Keywords

Comments

Robert G. Wilson v observes in A280098 that {1, 3, 4, 6, 8, 12, 24} seem to be the only positive integers k such that sigma(kn-1)/k is an integer for all n > 0.

Crossrefs

Cf. A280098 (analog for k = 24), A097723 (analog for k = 4), A033686 (analog for k = 3), A000203 (sigma, also the analog for k = 1).
The analog for k = 8 is A258835, up to the offset.
The analog for k = 6 is A098098 (up to the offset), a signed variant of this and the preceding one is A258831.
Cf. A086463.

Programs

  • GAP
    sequence := List([1..10^5], n-> Sigma(12 *n-1)/12); # Muniru A Asiru, Dec 28 2017
  • Maple
    with(numtheory):
    seq(sigma(12*n-1)/12, n=1..10^3); # Muniru A Asiru, Dec 28 2017
  • Mathematica
    Array[DivisorSigma[1, 12 # - 1]/12 &, 66] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    vector(90,n,sigma(12*n-1)/12)
    

Formula

Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024
Showing 1-4 of 4 results.