cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A280250 Sum of the smaller parts of the partitions of 2n into 2 squarefree parts.

Original entry on oeis.org

1, 3, 4, 6, 8, 14, 11, 17, 16, 32, 27, 39, 39, 58, 47, 61, 65, 93, 67, 95, 80, 130, 94, 142, 106, 203, 130, 189, 151, 232, 165, 246, 187, 311, 235, 362, 260, 389, 259, 377, 283, 442, 306, 473, 367, 511, 407, 530, 395, 625, 458, 673, 493, 801, 507, 782, 548, 842, 590, 901
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280250:=n->sum(i*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280250(n), n=1..100);
  • Mathematica
    Table[Total[Select[IntegerPartitions[2 n,{2}],AllTrue[#,SquareFreeQ]&][[;;,2]]],{n,60}] (* Harvey P. Dale, May 12 2025 *)

Formula

a(n) = Sum_{i=1..n} i * mu(i)^2 * mu(2*n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280252(n) - A280251(n).

A280251 Sum of the larger parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 5, 8, 18, 12, 34, 31, 63, 56, 88, 83, 129, 91, 138, 103, 195, 173, 303, 199, 345, 256, 442, 274, 482, 294, 525, 410, 539, 487, 668, 517, 714, 539, 913, 675, 1150, 776, 1131, 755, 1223, 783, 1406, 898, 1551, 1163, 1605, 1191, 1774, 1271, 1875, 1378, 2031, 1521, 2547
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280251:=n->sum((2*n-i)*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280251(n), n=1..100);
  • Mathematica
    Table[Total[Select[IntegerPartitions[2 n,{2}],AllTrue[#,SquareFreeQ]&][[;;,1]]],{n,60}] (* Harvey P. Dale, Apr 22 2023 *)

Formula

a(n) = Sum_{i=1..n} (2*n-i) * mu(i)^2 * mu(2*n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280252(n) - A280250(n).

A280252 Sum of the parts in the partitions of 2n into two squarefree parts.

Original entry on oeis.org

2, 8, 12, 24, 20, 48, 42, 80, 72, 120, 110, 168, 130, 196, 150, 256, 238, 396, 266, 440, 336, 572, 368, 624, 400, 728, 540, 728, 638, 900, 682, 960, 726, 1224, 910, 1512, 1036, 1520, 1014, 1600, 1066, 1848, 1204, 2024, 1530, 2116, 1598, 2304, 1666, 2500, 1836, 2704
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 29 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280252:=n->2*n*add(mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280252(n), n=1..100);
  • Mathematica
    Table[2 n*Sum[MoebiusMu[i]^2 MoebiusMu[2 n - i]^2, {i, n}], {n, 80}] (* Wesley Ivan Hurt, Jan 05 2024 *)

Formula

a(n) = 2*n * A280226(n).
a(n) = A280250(n) + A280251(n).

A280316 Sum of squares of parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

2, 18, 44, 124, 108, 372, 398, 886, 888, 1560, 1642, 2778, 2098, 3440, 2810, 5618, 5350, 9766, 6934, 12382, 9744, 17448, 11112, 20440, 12728, 24050, 19508, 26610, 25270, 36108, 28950, 41020, 31974, 56038, 42490, 74484, 51668, 77210, 52810, 87970, 57074, 105804, 68972
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280316:=n->add((i^2+(2*n-i)^2) * mobius(i)^2 * mobius(2*n-i)^2, i=1..n): seq(A280316(n), n=1..100);

Formula

a(n) = Sum_{i=1..n} (i^2 + (2*n-i)^2) * mu(i)^2 * mu(2*n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280320(n) + A280322(n).

A280320 Sum of the squares of the smaller parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 5, 10, 14, 34, 66, 59, 75, 84, 220, 205, 309, 373, 600, 565, 665, 839, 1103, 959, 1191, 1176, 1860, 1416, 2060, 1664, 3653, 2194, 3505, 2891, 4974, 3563, 5534, 4371, 7551, 5845, 8874, 6742, 10409, 7061, 10145, 8037, 12414, 9030, 13327, 10849, 15319, 13473, 15960
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280320:=n->add(i^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280320(n), n=1..100);
  • Mathematica
    Table[Total[Select[IntegerPartitions[2 n,{2}],AllTrue[#,SquareFreeQ]&][[All,2]]^2],{n,50}] (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    a(n) = sum(i=1, n, i^2*issquarefree(i)*issquarefree(2*n-i)); \\ Michel Marcus, May 16 2019

Formula

a(n) = Sum_{i=1..n} i^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280322(n).

A280322 Sum of the squares of the larger parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 13, 34, 110, 74, 306, 339, 811, 804, 1340, 1437, 2469, 1725, 2840, 2245, 4953, 4511, 8663, 5975, 11191, 8568, 15588, 9696, 18380, 11064, 20397, 17314, 23105, 22379, 31134, 25387, 35486, 27603, 48487, 36645, 65610, 44926, 66801, 45749, 77825, 49037, 93390, 59942
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280322:=n->add((2*n-i)^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280322(n), n=1..100);

Formula

a(n) = Sum_{i=1..n} (2n-i)^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280320(n).

A280634 Number of partitions of 2n into two refactorable parts.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, 2, 1, 0, 3, 0, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 3, 0, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 0, 5, 1, 2, 1, 3, 1, 3, 1, 3, 1, 5, 0, 7, 1, 3, 1, 3, 2, 3, 1, 5, 0, 6, 0, 7, 1, 3, 1, 5, 0, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 06 2017

Keywords

Examples

			a(5) = 2; There are two partitions of 2*5 = 10 into two refactorable parts: (1,9) and (2,8).
		

Crossrefs

Programs

  • Maple
    with(numtheory): A280634:=n->add((1-signum((i mod tau(i))))*(1-signum((2*n-i) mod tau(2*n-i))), i=1..n): seq(A280634(n), n=1..150);
  • Mathematica
    Table[Sum[(1 - Sign[Mod[i, DivisorSigma[0, i]]]) (1 - Sign[Mod[#, DivisorSigma[0, #]]] &[2 n - i]), {i, n}], {n, 90}] (* Michael De Vlieger, Jan 07 2017 *)

Formula

a(n) = Sum_{i=1..n} (1-sign(i mod d(i))) * (1-sign((2n-i) mod d(2n-i))) where d(n) is the number of divisors of n.

A294248 Number of partitions of 2n into two distinct squarefree parts.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 5, 4, 5, 4, 7, 4, 6, 4, 8, 6, 11, 6, 11, 7, 12, 7, 13, 8, 13, 10, 13, 10, 14, 10, 15, 10, 17, 12, 21, 13, 19, 12, 20, 12, 21, 13, 23, 17, 22, 16, 24, 17, 25, 17, 26, 18, 31, 18, 29, 19, 30, 19, 31, 19, 32, 23, 30, 22, 31, 22, 32, 22, 34
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[i]^2*MoebiusMu[2 n - i]^2, {i, n - 1}], {n, 80}]
  • PARI
    A294248(n)=sum(i=1,n-1,moebius(i)^2*moebius(2*n-i)^2); \\ R. J. Cano, Oct 25 2017

Formula

a(n) = Sum_{i=1..n-1} mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).

A280448 Sum of the GCDs of the smaller and larger parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 3, 4, 4, 6, 10, 9, 7, 6, 20, 15, 11, 17, 28, 19, 11, 23, 23, 25, 27, 36, 48, 30, 24, 12, 55, 16, 35, 39, 56, 41, 20, 55, 73, 55, 44, 50, 81, 65, 39, 53, 96, 56, 71, 33, 97, 63, 40, 29, 53, 88, 83, 71, 63, 91, 68, 98, 126, 78, 87, 80, 134, 65, 40, 107, 147, 89, 107, 119
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 03 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280448:=n->add(gcd(2*n-i, i)*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280448(n), n=1..100);
  • Mathematica
    Table[Sum[GCD[k, 2*n - k]*MoebiusMu[k]^2 * MoebiusMu[2*n - k]^2, {k, 1,
    n}], {n, 1, 50}] (* G. C. Greubel, Jan 05 2017 *)
  • PARI
    for(n=1,50, print1(sum(k=1,n, gcd(k,2*n-k) * (moebius(k))^2 *(moebius(2*n-k))^2), ", ")) \\ G. C. Greubel, Jan 05 2017

Formula

a(n) = Sum_{i=1..n} gcd(i,2n-i) * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).

A302391 Number of partitions of 2n into two parts with at least one nonsquarefree part.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 8, 7, 10, 8, 10, 7, 12, 9, 13, 9, 15, 11, 17, 12, 17, 15, 18, 15, 20, 17, 22, 16, 22, 15, 23, 18, 26, 20, 28, 20, 29, 21, 28, 23, 30, 24, 32, 25, 33, 26, 34, 23, 36, 27, 37, 27, 39, 29, 41, 29, 40, 34, 42, 34, 44, 36, 46
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 06 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[(1-MoebiusMu(2*n-k)^2*MoebiusMu(k)^2): k in [1..n]]: n in [1..70]]; // Vincenzo Librandi, Apr 09 2018
    
  • Mathematica
    Table[Sum[1 - MoebiusMu[2 n - i]^2*MoebiusMu[i]^2, {i, n}], {n, 100}]
  • PARI
    a(n) = sum(i=1, n, 1 - moebius(2*n-i)^2*moebius(i)^2); \\ Michel Marcus, Apr 09 2018

Formula

a(n) = Sum_{i=1..n} 1 - mu(2n-i)^2 * mu(i)^2, where mu is the Möbius function (A008683).
a(n) = n - A280226(n). - Wesley Ivan Hurt, Dec 11 2023
Showing 1-10 of 10 results.