cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007306 Denominators of Farey tree fractions (i.e., the Stern-Brocot subtree in the range [0,1]).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18, 21, 19, 14, 13, 17, 18, 15, 13, 14, 11, 7, 8, 13, 17, 16, 19, 23, 22, 17, 19, 26, 29, 25, 24
Offset: 0

Views

Author

Keywords

Comments

Also number of odd entries in n-th row of triangle of Stirling numbers of the second kind (A008277). - Benoit Cloitre, Feb 28 2004
Apparently (except for the first term) the number of odd entries in the alternated diagonals of Pascal's triangle at 45 degrees slope. - Javier Torres (adaycalledzero(AT)hotmail.com), Jul 26 2009
The Kn3 and Kn4 triangle sums, see A180662 for their definitions, of Sierpiński's triangle A047999 equal a(n+1). - Johannes W. Meijer, Jun 05 2011
From Yosu Yurramendi, Jun 23 2014: (Start)
If the terms (n>1) are written as an array:
2,
3, 3,
4, 5, 5, 4,
5, 7, 8, 7, 7, 8, 7, 5,
6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6,
7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19,17,18,
then the sum of the k-th row is 2*3^(k-2), each column is an arithmetic progression. The differences of the arithmetic progressions give the sequence itself (a(2^(m+1)+1+k) - a(2^m+1+k) = a(k+1), m >= 1, 1 <= k <= 2^m), because a(n) = A002487(2*n-1) and A002487 has these properties. A071585 also has these properties. Each row is a palindrome: a(2^(m+1)+1-k) = a(2^m+k), m >= 0, 1 <= k <= 2^m.
If the terms (n>0) are written in this way:
1,
2, 3,
3, 4, 5, 5,
4, 5, 7, 8, 7, 7, 8, 7,
5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9,
6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19,
each column is an arithmetic progression and the steps also give the sequence itself (a(2^(m+1)+k) - a(2^m+k) = a(k), m >= 0, 0 <= k < 2^m). Moreover, by removing the first term of each column:
a(2^(m+1)+k) = A049448(2^m+k+1), m >= 0, 0 <= k < 2^m.
(End)
k > 1 occurs in this sequence phi(k) = A000010(k) times. - Franklin T. Adams-Watters, May 25 2015
Except for the initial 1, this is the odd bisection of A002487. The even bisection of A002487 is A002487 itself. - Franklin T. Adams-Watters, May 25 2015
For all m >= 0, max_{k=1..2^m} a(2^m+k) = A000045(m+3) (Fibonacci sequence). - Yosu Yurramendi, Jun 05 2016
For all n >= 2, max(m: a(2^m+k) = n, 1<=k<=2^m) = n-2. - Yosu Yurramendi, Jun 05 2016
a(2^m+1) = m+2, m >= 0; a(2^m+2) = 2m+1, m>=1; min_{m>=0, k=1..2^m} a(2^m+k) = m+2; min_{m>=2, k=2..2^m-1} a(2^m+k) = 2m+1. - Yosu Yurramendi, Jun 06 2016
a(2^(m+2) + 2^(m+1) - k) - a(2^(m+1) + 2^m-k) = 2*a(k+1), m >= 0, 0 <= k <= 2^m. - Yosu Yurramendi, Jun 09 2016
If the initial 1 is omitted, this is the number of nonzero entries in row n of the generalized Pascal triangle P_2, see A282714 [Leroy et al., 2017]. - N. J. A. Sloane, Mar 02 2017
Apparently, this sequence was introduced by Johann Gustav Hermes in 1894. His paper gives a strong connection between this sequence and the so-called "Gaussian brackets" ("Gauss'schen Klammer"). For an independent discussion about Gaussian brackets, see the relevant MathWorld article and the article by Herzberger (1943). Srinivasan (1958) gave another, more modern, explanation of the connection between this sequence and the Gaussian brackets. (Parenthetically, J. G. Hermes is the mathematician who completed or constructed the regular polygon with 65537 sides.) - Petros Hadjicostas, Sep 18 2019

Examples

			[ 0/1; 1/1; ] 1/2; 1/3, 2/3; 1/4, 2/5, 3/5, 3/4; 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5; ...
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 61.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 158.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [1] cat [&+[Binomial(n+k,2*k) mod 2: k in [0..n]]: n in [0..80]]; // Vincenzo Librandi, Jun 10 2019
  • Maple
    A007306 := proc(n): if n=0 then 1 else A002487(2*n-1) fi: end: A002487 := proc(m) option remember: local a, b, n; a := 1; b := 0; n := m; while n>0 do if type(n, odd) then b := a + b else a := a + b end if; n := floor(n/2); end do; b; end proc: seq(A007306(n),n=0..77); # Johannes W. Meijer, Jun 05 2011
  • Mathematica
    a[0] = 1; a[n_] := Sum[ Mod[ Binomial[n+k-1, 2k] , 2], {k, 0, n}]; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Dec 16 2011, after Paul Barry *)
    a[0] = 0; a[1] = 1;
    Flatten[{1,Table[a[2*n] = a[n]; a[2*n + 1] = a[n] + a[n + 1], {n, 0, 50}]}] (* Horst H. Manninger, Jun 09 2021 *)
  • PARI
    {a(n) = if( n<1, n==0, n--; sum( k=0, n, binomial( n+k, n-k)%2))};
    
  • PARI
    {a(n) = my(m); if( n<2, n>=0, m = 2^length( binary( n-1)); a(n - m/2) + a(m-n+1))}; /* Michael Somos, May 30 2005 */
    
  • Python
    from sympy import binomial
    def a(n):
        return 1 if n<1 else sum(binomial(n + k - 1, 2*k) % 2 for k in range(n + 1))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from functools import reduce
    def A007306(n): return sum(reduce(lambda x,y:(x[0],sum(x)) if int(y) else (sum(x),x[1]),bin((n<<1)-1)[-1:2:-1],(1,0))) if n else 1 # Chai Wah Wu, May 18 2023
    
  • R
    maxrow <- 6 # by choice
    a <- c(1,2)
    for(m in 0:maxrow) for(k in 1:2^m){
      a[2^(m+1)+k  ] <- a[2^m+k] + a[k]
      a[2^(m+1)-k+1] <- a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jan 05 2015
    
  • R
    # Given n, compute directly a(n)
    # by taking into account the binary representation of n-1
    # aa <- function(n){
      b <- as.numeric(intToBits(n))
      l <- sum(b)
      m <- which(b == 1)-1
      d <- 1
      if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1
      f <- c(1,m[1]+2) # In A002487: f <- c(0,1)
      if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2]
      return(f[l+1])
    }
    # a(0) = 1, a(1) = 1, a(n) = aa(n-1)   n > 1
    #
    # Example
    n <- 73
    aa(n-1)
    #
    # Yosu Yurramendi, Dec 15 2016
    
  • Sage
    @CachedFunction
    def a(n):
        return a((odd_part(n-1)+1)/2)+a((odd_part(n)+1)/2) if n>1 else 1
    [a(n) for n in (0..77)] # after Alessandro De Luca, Peter Luschny, May 20 2014
    
  • Sage
    def A007306(n):
        if n == 0: return 1
        M = [1, 1]
        for b in (n-1).bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A007306(n) for n in (0..77)]) # Peter Luschny, Nov 28 2017
    
  • Scheme
    (define (A007306 n) (if (zero? n) 1 (A002487 (+ n n -1)))) ;; Code for A002487 given in that entry. - Antti Karttunen, Mar 21 2017
    

Formula

Recurrence: a(0) to a(8) are 1, 1, 2, 3, 3, 4, 5, 5, 4; thereafter a(n) = a(n-2^p) + a(2^(p+1)-n+1), where 2^p < n <= 2^(p+1). [J. Hermes, Math. Ann., 1894; quoted by Dickson, Vol. 1, p. 158] - N. J. A. Sloane, Mar 24 2019
a(4*n) = -a(n)+2*a(2*n); a(4*n+1) = -a(n)+a(2*n)+a(2*n+1); a(4*n+2)=a(n)-a(2*n)+2*a(2*n+1); a(4*n+3) = 4*a(n)-4*a(2*n)+3*a(2*n+1). Thus a(n) is a 2-regular sequence. - Jeffrey Shallit, Dec 26 2024
For n > 0, a(n) = A002487(n-1) + A002487(n) = A002487(2*n-1).
a(0) = 1; a(n) = Sum_{k=0..n-1} C(n-1+k, n-1-k) mod 2, n > 0. - Benoit Cloitre, Jun 20 2003
a(n+1) = Sum_{k=0..n} binomial(2*n-k, k) mod 2; a(n) = 0^n + Sum_{k=0..n-1} binomial(2(n-1)-k, k) mod 2. - Paul Barry, Dec 11 2004
a(n) = Sum_{k=0..n} C(n+k,2*k) mod 2. - Paul Barry, Jun 12 2006
a(0) = a(1) = 1; a(n) = a(A003602(n-1)) + a(A003602(n)), n > 1. - Alessandro De Luca, May 08 2014
a(n) = A007305(n+(2^m-1)), m=A029837(n), n=1,2,3,... . - Yosu Yurramendi, Jul 04 2014
a(n) = A007305(2^(m+1)-n) - A007305(2^m-n), m >= (A029837(n)+1), n=1,2,3,... - Yosu Yurramendi, Jul 05 2014
a(2^m) = m+1, a(2^m+1) = m+2 for m >= 0. - Yosu Yurramendi, Jan 01 2015
a(n+2) = A007305(n+2) + A047679(n) n >= 0. - Yosu Yurramendi, Mar 30 2016
a(2^m+2^r+k) = a(2^r+k)(m-r+1) - a(k), m >= 2, 0 <= r <= m-1, 0 <= k < 2^r. Example: a(73) = a(2^6+2^3+1) = a(2^3+1)*(6-3+1) - a(1) = 5*4 - 1 = 19 . - Yosu Yurramendi, Jul 19 2016
From Antti Karttunen, Mar 21 2017 & Apr 12 2017: (Start)
For n > 0, a(n) = A001222(A277324(n-1)) = A001222(A260443(n-1)*A260443(n)).
The following decompositions hold for all n > 0:
a(n) = A277328(n-1) + A284009(n-1).
a(n) = A283986(n) + A283988(n) = A283987(n) + 2*A283988(n).
a(n) = 2*A284265(n-1) + A284266(n-1).
a(n) = A284267(n-1) + A284268(n-1).
a(n) = A284565(n-1) + A284566(n-1).
a(n) = A285106(n-1) + A285108(n-1) = A285107(n-1) + 2*A285108(n-1). (End)
a(A059893(n)) = a(n+1) for n > 0. - Yosu Yurramendi, May 30 2017
a(n) = A287731(n) + A287732(n) for n > 0. - I. V. Serov, Jun 09 2017
a(n) = A287896(n) + A288002(n) for n > 1.
a(n) = A287896(n-1) + A002487(n-1) - A288002(n-1) for n > 1.
a(n) = a(n-1) + A002487(n-1) - 2*A288002(n-1) for n > 1. - I. V. Serov, Jun 14 2017
From Yosu Yurramendi, May 14 2019: (Start)
For m >= 0, M >= m, 0 <= k < 2^m,
a((2^(m+1) + A119608(2^m+k+1))*2^(M-m) - A000035(2^m+k)) =
a((2^(m+2) - A119608(2^m+k+1))*2^(M-m) - A000035(2^m+k)-1) =
a(2^(M+2) - (2^m+k)) = a(2^(M+1) + (2^m+k) + 1) =
a(2^m+k+1)*(M-m) + a(2^(m+1)+2^m+k+1). (End)
a(k) = sqrt(A007305(2^(m+1)+k)*A047679(2^(m+1)+k-2) - A007305(2^m+k)*A047679(2^m+k-2)), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jun 09 2019
G.f.: 1 + x * (1 + x) * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Jul 19 2019
Conjecture: a(n) = a(n-1) + b(n-1) - 2*(a(n-1) mod b(n-1)) for n > 1 with a(0) = a(1) = 1 where b(n) = a(n) - b(n-1) for n > 1 with b(1) = 1. - Mikhail Kurkov, Mar 13 2022

Extensions

Formula fixed and extended by Franklin T. Adams-Watters, Jul 07 2009
Incorrect Maple program removed by Johannes W. Meijer, Jun 05 2011

A000360 Distribution of nonempty triangles inside a fractal rep-4-tile.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 0, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 1, 4, 3, 3, 1, 4, 2, 4, 2, 3, 2, 3, 0, 3, 3, 4, 2, 6, 3, 5, 2, 5, 4, 7, 2, 6, 4, 4, 1, 5, 3, 6, 3, 6, 4, 6, 1, 5, 4, 5, 2, 5, 2, 3, 1, 3, 3, 6, 2, 7, 5, 6, 2, 8, 5, 9, 4, 8, 5, 7, 1, 7, 6, 9, 4, 11, 6, 9, 3, 8, 6, 10, 3, 8, 5, 5, 1, 6, 4, 8, 4, 9, 6, 9, 2
Offset: 0

Views

Author

Keywords

Comments

a(n) = Running count of congruent nonempty triangles along lines perpendicular to the base of the Gosper-Lafitte triangle.
Also, a(n) = Sum of the coefficients of the terms with an even exponent in the Stern polynomial B(n+1,t), or in other words, the sum of the even-indexed terms (the leftmost is at index 0) of the irregular triangle A125184, starting from its second row. - Antti Karttunen, Apr 20 2017
Back in May 1995, it was proved that a(n) = modulo 3 mapping, (+1,-1,+0)/2, of the Stern-Brocot sequence A002487, dropping its 1st term. - M. Jeremie Lafitte (Levitas), Apr 23 2017

References

  • M. J. Lafitte, Sur l'Effet Noah en Géométrie, rapport à l'INPI, mars 1995.

Crossrefs

Cf. also mutual recurrence pair A287729, A287730.

Programs

  • Haskell
    import Data.List (transpose)
    a000360 n = a000360_list !! n
    a000360_list = 1 : concat (transpose
       [zipWith (+) a000360_list $ drop 2 a057078_list,
        zipWith (+) a000360_list $ tail a000360_list])
    -- Reinhard Zumkeller, Mar 22 2013
    (Scheme, with memoization-macro definec):
    (define (A000360 n) (A000360with_prep_0 (+ 1 n)))
    (definec (A000360with_prep_0 n) (cond ((<= n 1) n) ((even? n) (A284556 (/ n 2))) (else (+ (A000360with_prep_0 (/ (- n 1) 2)) (A000360with_prep_0 (/ (+ n 1) 2))))))
    (definec (A284556 n) (cond ((<= n 1) 0) ((even? n) (A000360with_prep_0 (/ n 2))) (else (+ (A284556 (/ (- n 1) 2)) (A284556 (/ (+ n 1) 2))))))
    ;; Antti Karttunen, Apr 07 2017
    
  • Mathematica
    a[0] = 1; a[n_?EvenQ] := a[n] = a[n/2] + a[n/2-1]; a[n_?OddQ] := a[n] = a[(n-1)/2] - Mod[(n-1)/2-1, 3] + 1; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Jan 20 2015, after Ralf Stephan *)
  • PARI
    a(n) = if(n==0, 1, if(n%2, a((n - 1)/2) - ((n - 1)/2 - 1)%3 + 1, a(n/2) + a(n/2 - 1))); \\ Indranil Ghosh, Apr 20 2017

Formula

a(3n) = (A002487(3n+1) + 1)/2, a(3n+1) = (A002487(3n+2) - 1)/2, a(3n+2) = A002487(3n+3)/2. - M. Jeremie Lafitte (Levitas), Apr 23 2017
a(0) = 1, a(2n) = a(n) + a(n-1), a(2n+1) = a(n) + 1 - (n-1 mod 3). - Ralf Stephan, Oct 05 2003; Note: according to Ralf Stephan, this formula was found empirically. It follows from that found for the Stern-Brocot sequence A002487 and the first formula. - Antti Karttunen, Apr 21 2017, M. Jeremie Lafitte (Levitas), Apr 23 2017
From Antti Karttunen, Apr 07 2017: (Start)
Ultimately equivalent to the above formulae, we have:
a(n) = A001222(A284553(1+n)).
a(n) = A002487(1+n) - A284556(1+n).
a(n) = b(1+n), with b from a mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1), c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). [c(n) = A284556(n), b(n)+c(n) = A002487(n).]
(End)

Extensions

More terms from David W. Wilson, Aug 30 2000
Original relation to the Stern-Brocot sequence A002487 reformulated by M. Jeremie Lafitte (Levitas), Apr 23 2017

A284563 a(n) = A247503(A277324(n)).

Original entry on oeis.org

2, 2, 2, 10, 10, 10, 50, 10, 10, 250, 250, 50, 250, 250, 50, 110, 110, 250, 6250, 1250, 1250, 31250, 6250, 550, 2750, 6250, 6250, 13750, 2750, 2750, 6050, 110, 110, 30250, 68750, 13750, 343750, 781250, 156250, 151250, 151250, 781250, 19531250, 1718750, 343750, 8593750, 756250, 6050, 30250, 756250, 1718750, 3781250, 3781250, 8593750, 18906250, 151250
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Crossrefs

Odd bisection of A284553.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a[2 n + 1], {n, 0, 55}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A284563(n) = A284553(n+n+1); \\ Other code as in A284553.
    
  • Scheme
    (define (A284563 n) (A247503 (A277324 n)))
    (define (A284563 n) (A284553 (+ n n 1)))

Formula

a(n) = A247503(A277324(n)).
a(n) = A284553((2*n)+1).
Other identities. For all n >= 0:
A001222(a(n)) = A284565(n).

A284566 Odd bisection of A284556.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 2, 3, 3, 4, 4, 3, 4, 4, 2, 3, 5, 5, 5, 6, 6, 6, 5, 4, 6, 7, 5, 5, 6, 4, 3, 4, 5, 7, 7, 7, 9, 9, 6, 7, 10, 10, 9, 9, 9, 8, 6, 5, 8, 10, 8, 9, 11, 9, 7, 7, 8, 9, 8, 6, 7, 6, 3, 4, 7, 8, 8, 10, 11, 11, 9, 9, 13, 15, 12, 12, 14, 11, 8, 9, 12, 15, 14, 14, 17, 16, 11, 11, 15, 15, 13, 12, 12, 10, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Apr 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Which[n < 2, n, EvenQ@ n, a[n/2], True, a[(n - 1)/2] + a[(n + 1)/2]]; Table[(a[#] - JacobiSymbol[#, 3])/2 &[2 n + 1], {n, 0, 96}] (* Michael De Vlieger, Apr 05 2017 *)
  • Scheme
    (define (A284566 n) (A284556 (+ n n 1)))
    (define (A284566 n) (A001222 (A284564 n)))

Formula

a(n) = A284556((2*n)+1).
a(n) = A001222(A284564(n)).
Other identities. For all n >= 1:
A007306(n) = a(n-1) + A284565(n-1).
Showing 1-4 of 4 results.