cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290890 p-INVERT of the positive integers, where p(S) = 1 - S^2.

Original entry on oeis.org

0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
Note that in A290890, s = (1,2,3,4,...); i.e., A000027(n+1) for n>=0, whereas in A290990, s = (0,1,2,3,4,...); i.e., A000027(n) for n>=0.
Guide to p-INVERT sequences using s = (1,2,3,4,5,...) = A000027:
p(S) t(1,2,3,4,5,...)
1 - S A001906
1 - S^2 A290890; see A113067 for signed version
1 - S^3 A290891
1 - S^4 A290892
1 - S^5 A290893
1 - S^6 A290894
1 - S^7 A290895
1 - S^8 A290896
1 - S - S^2 A289780
1 - S - S^3 A290897
1 - S - S^4 A290898
1 - S^2 - S^4 A290899
1 - S^2 - S^3 A290900
1 - S^3 - S^4 A290901
1 - 2S A052530; (1/2)*A052530 = A001353
1 - 3S A290902; (1/3)*A290902 = A004254
1 - 4S A003319; (1/4)*A003319 = A001109
1 - 5S A290903; (1/5)*A290903 = A004187
1 - 2*S^2 A290904; (1/2)*A290904 = A290905
1 - 3*S^2 A290906; (1/3)*A290906 = A290907
1 - 4*S^2 A290908; (1/4)*A290908 = A099486
1 - 5*S^2 A290909; (1/5)*A290909 = A290910
1 - 6*S^2 A290911; (1/6)*A290911 = A290912
1 - 7*S^2 A290913; (1/7)*A290913 = A290914
1 - 8*S^2 A290915; (1/8)*A290915 = A290916
(1 - S)^2 A290917
(1 - S)^3 A290918
(1 - S)^4 A290919
(1 - S)^5 A290920
(1 - S)^6 A290921
1 - S - 2*S^2 A290922
1 - 2*S - 2*S^2 A290923; (1/2)*A290923 = A290924
1 - 3*S - 2*S^2 A290925
(1 - S^2)^2 A290926
(1 - S^2)^3 A290927
(1 - S^3)^2 A290928
(1 - S)(1 - S^2) A290929
(1 - S^2)(1 - S^4) A290930
1 - 3 S + S^2 A291025
1 - 4 S + S^2 A291026
1 - 5 S + S^2 A291027
1 - 6 S + S^2 A291028
1 - S - S^2 - S^3 A291029
1 - S - S^2 - S^3 - S^4 A201030
1 - 3 S + 2 S^3 A291031
1 - S - S^2 - S^3 + S^4 A291032
1 - 6 S A291033
1 - 7 S A291034
1 - 8 S A291181
1 - 3 S + 2 S^3 A291031
1 - 3 S + 2 S^2 A291182
1 - 4 S + 2 S^3 A291183
1 - 4 S + 3 S^3 A291184

Examples

			(See the examples at A289780.)
		

Crossrefs

Cf. A000027, A113067, A289780, A113067 (signed version of same sequence).

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)

Formula

G.f.: x/(1 - 4 x + 5 x^2 - 4 x^3 + x^4).
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - a(n-4).

A070997 a(n) = 8*a(n-1) - a(n-2), a(0)=1, a(-1)=1.

Original entry on oeis.org

1, 7, 55, 433, 3409, 26839, 211303, 1663585, 13097377, 103115431, 811826071, 6391493137, 50320119025, 396169459063, 3119035553479, 24556114968769, 193329884196673, 1522082958604615, 11983333784640247, 94344587318517361
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), May 18 2002

Keywords

Comments

A Pellian sequence.
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,8), where L is defined as in A108299; see also A057080 for L(n,-8). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7} which do not end in 0. - Tanya Khovanova, Jan 10 2007
Hankel transform of A158197. - Paul Barry, Mar 13 2009
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 6 = 0. - Colin Barker, Feb 05 2014
From Klaus Purath, May 06 2025: (Start)
Nonnegative solutions to the Diophantine equation 3*b(n)^2 - 5*a(n)^2 = -2. The corresponding b(n) are A057080(n). Note that (b(n)*b(n+2) - b(n+1)^2)/2 = -5 and (a(n)*a(n+2) - a(n+1)^2)/2 = 3.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A001090(n+1) = Lucas U(8,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n+1) + t(i))/(t(i+n+1) + t(i+n)) as long as t(i+n+1) + t(i+n) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 7*t(i+2) - 7*t(i+1) + t(i) or t(i+2) = 8*t(i+1) - t(i) regardless of initial values and including this sequence itself. (End)

Examples

			1 + 7*x + 55*x^2 + 433*x^3 + 3409*x^4 + 26839*x^5 + ...
		

Crossrefs

a(n) = sqrt((3*A057080(n)^2+2)/5) (cf. Richardson comment).
Row 8 of array A094954.
Cf. A001090.
Cf. similar sequences listed in A238379.
Cf. A041023.

Programs

  • Magma
    I:=[1, 7]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2013
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 8*x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 26 2013 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
       ] (* Complement of A041023 *)
    a[15, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{8,-1},{1,7},20] (* Harvey P. Dale, Dec 04 2021 *)
  • PARI
    {a(n) = subst( 9*poltchebi(n) - poltchebi(n-1), x, 4) / 5} /* Michael Somos, Jun 07 2005 */
    
  • PARI
    {a(n) = if( n<0, n=-1-n); polcoeff( (1 - x) / (1 - 8*x + x^2) + x * O(x^n), n)} /* Michael Somos, Jun 07 2005 */
    
  • Sage
    [lucas_number1(n,8,1)-lucas_number1(n-1,8,1) for n in range(1, 21)] # Zerinvary Lajos, Nov 10 2009
    

Formula

For all members x of the sequence, 15*x^2 - 6 is a square. Lim_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 12 2002
a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n.
a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1)
a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T polynomials and U(-1, x) := 0. U(n, 4)=A001090(n+1), n>=-1.
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 6) = a(n) - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 48 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004
a(n) = (-1)^n*U(2n, i*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
G.f.: (1-x)/(1-8*x+x^2).
a(n) = a(-1-n).
a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006
[a(n), A001090(n+1)] = [1,6; 1,7]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008
For n>0, a(n) is the numerator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the denominators see A136325. - Greg Dresden, Sep 12 2019
From Peter Bala, Apr 30 2025: (Start)
a(n) = (1/sqrt(5)) * sqrt(1 - T(2*n+1, -4)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 7, 0, 55, 0, 433, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -10, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A291033(n-1) - 1/A291033(n).) (End)
In addition to the first formula above: In general, the following applies to all recurrences (a(n)) of the form (8,-1) with a(0) = 1 and arbitrary a(1): 15*a(n)^2 + y = b^2 where y = x^2 + 8*x + 1 and x = a(1) - 8. Also y = a(k+1)^2 - a(k)*a(k+1) for any k >=0. - Klaus Purath, May 06 2025
Showing 1-2 of 2 results.