For all members x of the sequence, 15*x^2 - 6 is a square. Lim_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). -
Gregory V. Richardson, Oct 12 2002
a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n.
a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1)
a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T polynomials and U(-1, x) := 0. U(n, 4)=
A001090(n+1), n>=-1.
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 6) = a(n) -
Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 48 + a(n+1)a(n+2). -
Ralf Stephan, May 29 2004
a(n) = (-1)^n*U(2n, i*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). -
Paul Barry, Mar 13 2005
G.f.: (1-x)/(1-8*x+x^2).
a(n) = a(-1-n).
a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). -
Paul Barry, Feb 03 2006
For n>0, a(n) is the numerator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the denominators see
A136325. -
Greg Dresden, Sep 12 2019
a(n) = (1/sqrt(5)) * sqrt(1 - T(2*n+1, -4)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 7, 0, 55, 0, 433, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -10, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/
A291033(n-1) - 1/
A291033(n).) (End)
In addition to the first formula above: In general, the following applies to all recurrences (a(n)) of the form (8,-1) with a(0) = 1 and arbitrary a(1): 15*a(n)^2 + y = b^2 where y = x^2 + 8*x + 1 and x = a(1) - 8. Also y = a(k+1)^2 - a(k)*a(k+1) for any k >=0. -
Klaus Purath, May 06 2025
Comments