cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A291166 Connected Haar graph numbers.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Eric W. Weisstein, Aug 19 2017

Keywords

Comments

Complement of A291165.
These appear to be numbers whose positions of 1's in their reversed binary expansion are relatively prime. If so, this sequence lists all positions of 1's in A326674. Numbers whose positions of 1's in their reversed binary expansion are pairwise coprime (as opposed to relatively prime) are A326675. - Gus Wiseman, Jul 19 2019

Crossrefs

A326675 The positions of 1's in the reversed binary expansion of n are pairwise coprime, where a singleton is not coprime unless it is {1}.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 33, 48, 49, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 112, 113, 129, 132, 133, 144, 145, 148, 149, 192, 193, 196, 197, 208, 209, 212
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			41 has reversed binary expansion (1,0,0,1,0,1) with positions of 1's being {1,4,6}, which are not pairwise coprime, so 41 is not in the sequence.
		

Crossrefs

Equals the complement of A131577 in A087087.
Numbers whose prime indices are pairwise coprime are A302696.
Taking relatively prime instead of pairwise coprime gives A291166.

Programs

  • Maple
    extend:= proc(L) local C,c;
      C:= select(t -> andmap(s -> igcd(s,t)=1, L), [$1..L[-1]-1]);
      L, seq(procname([op(L),c]),c=C)
    end proc:
    g:= proc(L) local i;
      add(2^(i-1),i=L)
    end proc:
    map(g, [[1],seq(extend([k])[2..-1], k=2..10)]); # Robert Israel, Jul 19 2019
  • Mathematica
    Select[Range[100],CoprimeQ@@Join@@Position[Reverse[IntegerDigits[#,2]],1]&]
  • PARI
    is(n) = my (p=1); while (n, my (o=1+valuation(n,2)); if (gcd(p,o)>1, return (0), n-=2^(o-1); p*=o)); return (1) \\ Rémy Sigrist, Jul 19 2019

A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

a(n) is even if and only if n is in A062880. - Robert Israel, Oct 13 2020

Examples

			The reversed binary expansion of 40 is (0,0,0,1,0,1), with positions of 1's being {4,6}, so a(40) = GCD(4,6) = 2.
		

Crossrefs

Positions of 1's are A291166, and non-1's are A291165.
GCDs of prime indices are A289508.
GCDs of strict partitions encoded by FDH numbers are A319826.
Numbers whose binary positions are pairwise coprime are A326675.

Programs

  • Maple
    f:= proc(n) local B;
      B:= convert(n,base,2);
      igcd(op(select(t -> B[t]=1, [$1..ilog2(n)+1])))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2020
  • Mathematica
    Table[GCD@@Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,100}]

Formula

Trivially, a(n) <= log_2(n). - Charles R Greathouse IV, Nov 15 2022

A326669 Numbers k such that the average position of the ones in the binary expansion of k is an integer.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 14, 16, 17, 20, 21, 27, 28, 31, 32, 34, 35, 39, 40, 42, 49, 54, 56, 57, 62, 64, 65, 68, 70, 73, 78, 80, 84, 85, 93, 98, 99, 107, 108, 112, 114, 119, 124, 127, 128, 130, 133, 136, 140, 141, 146, 147, 155, 156, 160, 161, 167, 168, 170, 175
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

These are numbers whose exponents in their representation as a sum of distinct powers of 2 have integer average.

Examples

			42 is in the sequence because 42 = 2^1 + 2^3 + 2^5 and the average of {1,3,5} is 3, an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[Mean[Join@@Position[IntegerDigits[#,2],1]]]&]
  • PARI
    isok(m) = my(b=binary(m)); denominator(vecsum(Vec(select(x->(x==1), b, 1)))/hammingweight(m)) == 1; \\ Michel Marcus, Jul 02 2021

A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
This is a ranking sequence for pairwise non-coprime compositions.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()          138: (4,2,2)       546: (4,4,2)
       2: (2)         160: (2,6)         552: (4,2,4)
       4: (3)         162: (2,4,2)       554: (4,2,2,2)
       8: (4)         168: (2,2,4)       640: (2,8)
      10: (2,2)       170: (2,2,2,2)     642: (2,6,2)
      16: (5)         256: (9)           648: (2,4,4)
      32: (6)         260: (6,3)         650: (2,4,2,2)
      34: (4,2)       288: (3,6)         672: (2,2,6)
      36: (3,3)       292: (3,3,3)       674: (2,2,4,2)
      40: (2,4)       512: (10)          680: (2,2,2,4)
      42: (2,2,2)     514: (8,2)         682: (2,2,2,2,2)
      64: (7)         520: (6,4)        1024: (11)
     128: (8)         522: (6,2,2)      2048: (12)
     130: (6,2)       528: (5,5)        2050: (10,2)
     136: (4,4)       544: (4,6)        2052: (9,3)
		

Crossrefs

A337604 counts these compositions of length 3.
A337667 counts these compositions.
A337694 is the version for Heinz numbers of partitions.
A337696 is the strict case.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-coprime partitions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A291166 appears to rank relatively prime compositions.
- A326674 is greatest common divisor.
- A333219 is Heinz number.
- A333227 ranks coprime (Mathematica definition) compositions.
- A333228 ranks compositions with distinct parts coprime.
- A335235 ranks singleton or coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]

A337696 Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()        512: (10)       2304: (3,9)
       2: (2)       514: (8,2)      2560: (2,10)
       4: (3)       520: (6,4)      2568: (2,6,4)
       8: (4)       544: (4,6)      2592: (2,4,6)
      16: (5)       640: (2,8)      4096: (13)
      32: (6)      1024: (11)       8192: (14)
      34: (4,2)    2048: (12)       8194: (12,2)
      40: (2,4)    2050: (10,2)     8200: (10,4)
      64: (7)      2052: (9,3)      8224: (8,6)
     128: (8)      2056: (8,4)      8226: (8,4,2)
     130: (6,2)    2082: (6,4,2)    8232: (8,2,4)
     160: (2,6)    2088: (6,2,4)    8320: (6,8)
     256: (9)      2176: (4,8)      8704: (4,10)
     260: (6,3)    2178: (4,6,2)    8706: (4,8,2)
     288: (3,6)    2208: (4,2,6)    8832: (4,2,8)
		

Crossrefs

A318719 gives the Heinz numbers of the unordered version, with non-strict version A337694.
A337667 counts the non-strict version.
A337983 counts these compositions, with unordered version A318717.
A051185 counts intersecting set-systems, with spanning case A305843.
A200976 and A328673 count the unordered non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case A319786.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A333219 is Heinz number.
- A333227 ranks pairwise coprime compositions, or A335235 if singletons are considered coprime.
- A333228 ranks compositions whose distinct parts are pairwise coprime.
- A335236 ranks compositions neither a singleton nor pairwise coprime.
- A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
- A337666 ranks the non-strict version.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]

Formula

Intersection of A337666 and A233564.

A338552 Non-powers of primes whose prime indices have a common divisor > 1.

Original entry on oeis.org

21, 39, 57, 63, 65, 87, 91, 111, 115, 117, 129, 133, 147, 159, 171, 183, 185, 189, 203, 213, 235, 237, 247, 259, 261, 267, 273, 299, 301, 303, 305, 319, 321, 325, 333, 339, 351, 365, 371, 377, 387, 393, 399, 417, 427, 441, 445, 453, 477, 481, 489, 497, 507
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of non-constant, non-relatively prime partitions. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     21: {2,4}      183: {2,18}       305: {3,18}
     39: {2,6}      185: {3,12}       319: {5,10}
     57: {2,8}      189: {2,2,2,4}    321: {2,28}
     63: {2,2,4}    203: {4,10}       325: {3,3,6}
     65: {3,6}      213: {2,20}       333: {2,2,12}
     87: {2,10}     235: {3,15}       339: {2,30}
     91: {4,6}      237: {2,22}       351: {2,2,2,6}
    111: {2,12}     247: {6,8}        365: {3,21}
    115: {3,9}      259: {4,12}       371: {4,16}
    117: {2,2,6}    261: {2,2,10}     377: {6,10}
    129: {2,14}     267: {2,24}       387: {2,2,14}
    133: {4,8}      273: {2,4,6}      393: {2,32}
    147: {2,4,4}    299: {6,9}        399: {2,4,8}
    159: {2,16}     301: {4,14}       417: {2,34}
    171: {2,2,8}    303: {2,26}       427: {4,18}
		

Crossrefs

A318978 allows prime powers, counted by A018783, with complement A289509.
A327685 allows nonprime prime powers.
A338330 is the coprime instead of relatively prime version.
A338554 counts the partitions with these Heinz numbers.
A338555 is the complement.
A000740 counts relatively prime compositions.
A000961 lists powers of primes, with complement A024619.
A051424 counts pairwise coprime or singleton partitions.
A108572 counts nontrivial periodic partitions, with Heinz numbers A001597.
A291166 ranks relatively prime compositions, with complement A291165.
A302696 gives the Heinz numbers of pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.

Programs

  • Mathematica
    Select[Range[100],!(#==1||PrimePowerQ[#]||GCD@@PrimePi/@First/@FactorInteger[#]==1)&]

Formula

Equals A024619 /\ A318978.
Complement of A000961 \/ A289509.

A338555 Numbers that are either a power of a prime or have relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions either constant or relatively prime (A338553). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Crossrefs

A327534 uses primes instead of prime powers.
A338331 is the pairwise coprime version, with complement A338330.
A338552 is the complement.
A338553 counts the partitions with these Heinz numbers.
A000837 counts relatively prime partitions, with Heinz numbers A289509.
A000961 lists powers of primes.
A018783 counts partitions whose prime indices are not relatively prime, with Heinz numbers A318978.
A051424 counts pairwise coprime or singleton partitions.
A291166 ranks relatively prime compositions, with complement A291165.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.

Programs

  • Mathematica
    Select[Range[100],#==1||PrimePowerQ[#]||GCD@@PrimePi/@First/@FactorInteger[#]==1&]

Formula

Equals A000961 \/ A289509.
Complement of A024619 /\ A318978.

A357003 Number of Hamiltonian cycles in the cyclic Haar graph with index n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 6, 0, 1, 0, 6, 1, 6, 6, 72, 0, 1, 1, 8, 1, 8, 8, 156, 1, 8, 8, 156, 8, 156, 156, 1440, 0, 1, 0, 8, 0, 12, 12, 335, 0, 12, 0, 300, 12, 352, 300, 4800, 1, 8, 12, 335, 12, 300, 352, 4800, 8, 335, 300, 4800, 335, 4800, 4800, 43200, 0, 1, 1, 10, 1
Offset: 1

Views

Author

Pontus von Brömssen, Sep 08 2022

Keywords

Comments

a(n) > 0 for all odd n >= 3 (Hladnik, Marušič, and Pisanski, 2002).

Crossrefs

Formula

a(2^k-1) = A010796(k-1) for k >= 2.
a(A291165(n)) = 0.
a(n) = a(A357004(n)).

A349152 Standard composition numbers of compositions into divisors. Numbers k such that all parts of the k-th composition in standard order are divisors of the sum of parts.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 15, 16, 31, 32, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 127, 128, 136, 138, 139, 141, 142, 143, 162, 163, 168, 170, 171, 173, 174, 175, 177, 181, 182, 183, 184
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
      0: ()              36: (3,3)           54: (1,2,1,2)
      1: (1)             37: (3,2,1)         55: (1,2,1,1,1)
      2: (2)             38: (3,1,2)         57: (1,1,3,1)
      3: (1,1)           39: (3,1,1,1)       58: (1,1,2,2)
      4: (3)             41: (2,3,1)         59: (1,1,2,1,1)
      7: (1,1,1)         42: (2,2,2)         60: (1,1,1,3)
      8: (4)             43: (2,2,1,1)       61: (1,1,1,2,1)
     10: (2,2)           44: (2,1,3)         62: (1,1,1,1,2)
     11: (2,1,1)         45: (2,1,2,1)       63: (1,1,1,1,1,1)
     13: (1,2,1)         46: (2,1,1,2)       64: (7)
     14: (1,1,2)         47: (2,1,1,1,1)    127: (1,1,1,1,1,1,1)
     15: (1,1,1,1)       50: (1,3,2)        128: (8)
     16: (5)             51: (1,3,1,1)      136: (4,4)
     31: (1,1,1,1,1)     52: (1,2,3)        138: (4,2,2)
     32: (6)             53: (1,2,2,1)      139: (4,2,1,1)
		

Crossrefs

Looking at length instead of parts gives A096199.
These composition are counted by A100346.
A version counting subsets instead of compositions is A125297.
An unordered version is A326841, counted by A018818.
A011782 counts compositions.
A316413 ranks partitions with sum divisible by length, counted by A067538.
A319333 ranks partitions with sum equal to lcm, counted by A074761.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Permutations are ranked by A333218.
- Relatively prime compositions are ranked by A291166*, complement A291165.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],#==0||Divisible[Total[stc[#]],LCM@@stc[#]]&]
Showing 1-10 of 10 results.