cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A048793 List giving all subsets of natural numbers arranged in standard statistical (or Yates) order.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 1, 2, 4, 3, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 1, 2, 5, 3, 5, 1, 3, 5, 2, 3, 5, 1, 2, 3, 5, 4, 5, 1, 4, 5, 2, 4, 5, 1, 2, 4, 5, 3, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 6, 2, 6, 1, 2, 6, 3, 6, 1, 3, 6, 2, 3, 6, 1, 2, 3, 6, 4, 6, 1, 4
Offset: 0

Views

Author

Keywords

Comments

For n>0: first occurrence of n in row 2^(n-1), and when the table is seen as a flattened list at position n*2^(n-1)+1, cf. A005183. - Reinhard Zumkeller, Nov 16 2013
Row n lists the positions of 1's in the reversed binary expansion of n. Compare to triangles A112798 and A213925. - Gus Wiseman, Jul 22 2019

Examples

			From _Gus Wiseman_, Jul 22 2019: (Start)
Triangle begins:
  {}
  1
  2
  1  2
  3
  1  3
  2  3
  1  2  3
  4
  1  4
  2  4
  1  2  4
  3  4
  1  3  4
  2  3  4
  1  2  3  4
  5
  1  5
  2  5
  1  2  5
  3  5
(End)
		

References

  • S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, p. 249.

Crossrefs

Cf. A048794.
Row lengths are A000120.
First column is A001511.
Heinz numbers of rows are A019565.
Row sums are A029931.
Reversing rows gives A272020.
Subtracting 1 from each term gives A133457; subtracting 1 and reversing rows gives A272011.
Indices of relatively prime rows are A291166 (see also A326674); arithmetic progressions are A295235; rows with integer average are A326669 (see also A326699/A326700); pairwise coprime rows are A326675.

Programs

  • C
    #include 
    #include 
    #define USAGE "Usage: 'A048793 num' where num is the largest number to use creating sets.\n"
    #define MAX_NUM 10
    #define MAX_ROW 1024
    int main(int argc, char *argv[]) {
      unsigned short a[MAX_ROW][MAX_NUM]; signed short old_row, new_row, i, j, end;
      if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; }
      end = atoi(argv[1]); end = (end > MAX_NUM) ? MAX_NUM: end;
      for (i = 0; i < MAX_ROW; i++) for ( j = 0; j < MAX_NUM; j++) a[i][j] = 0;
      a[1][0] = 1; new_row = 2;
      for (i = 2; i <= end; i++) {
        a[new_row++ ][0] = i;
        for (old_row = 1; a[old_row][0] != i; old_row++) {
          for (j = 0; a[old_row][j] != 0; j++) { a[new_row][j] = a[old_row][j]; }
          a[new_row++ ][j] = i;
        }
      }
      fprintf(stdout, "Values: 0");
      for (i = 1; a[i][0] != 0; i++) for (j = 0; a[i][j] != 0; j++) fprintf(stdout, ",%d", a[i][j]);
      fprintf(stdout, "\n"); return EXIT_SUCCESS
    }
    
  • Haskell
    a048793 n k = a048793_tabf !! n !! k
    a048793_row n = a048793_tabf !! n
    a048793_tabf = [0] : [1] : f [[1]] where
       f xss = yss ++ f (xss ++ yss) where
         yss = [y] : map (++ [y]) xss
         y = last (last xss) + 1
    -- Reinhard Zumkeller, Nov 16 2013
  • Maple
    T:= proc(n) local i, l, m; l:= NULL; m:= n;
          if n=0 then return 0 fi; for i while m>0 do
          if irem(m, 2, 'm')=1 then l:=l, i fi od; l
        end:
    seq(T(n), n=0..50);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    s[0] = {{}}; s[n_] := s[n] = Join[s[n - 1], Append[#, n]& /@ s[n - 1]]; Join[{0}, Flatten[s[6]]] (* Jean-François Alcover, May 24 2012 *)
    Table[Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,30}] (* Gus Wiseman, Jul 22 2019 *)

Formula

Constructed recursively: subsets that include n are obtained by appending n to all earlier subsets.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2000

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A096111 If n = 2^k - 1, then a(n) = k+1, otherwise a(n) = (A000523(n)+1)*a(A053645(n)).

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 6, 4, 4, 8, 8, 12, 12, 24, 24, 5, 5, 10, 10, 15, 15, 30, 30, 20, 20, 40, 40, 60, 60, 120, 120, 6, 6, 12, 12, 18, 18, 36, 36, 24, 24, 48, 48, 72, 72, 144, 144, 30, 30, 60, 60, 90, 90, 180, 180, 120, 120, 240, 240, 360, 360, 720, 720, 7, 7, 14, 14, 21, 21
Offset: 0

Views

Author

Amarnath Murthy, Jun 29 2004

Keywords

Comments

Each n > 1 occurs 2*A045778(n) times in the sequence.
f(n+2^k) = (k+1)*f(n) if 2^k > n+1. - Robert Israel, Apr 25 2016
If the binary indices of n (row n of A048793) are the positions 1's in its reversed binary expansion, then a(n) is the product of all binary indices of n + 1. The number of binary indices of n is A000120(n), their sum is A029931(n), and their average is A326699(n)/A326700(n). - Gus Wiseman, Jul 27 2019

Crossrefs

Permutation of A096115, i.e. a(n) = A096115(A122198(n+1)) [Note the different starting offsets]. Bisection: A121663. Cf. A096113, A052330.
Cf. A029931.

Programs

  • Maple
    f:= proc(n) local L;
        L:= convert(2*n+2,base,2);
        convert(subs(0=NULL,zip(`*`,L, [$0..nops(L)-1])),`*`);
    end proc:
    map(f, [$0..100]); # Robert Israel, Apr 25 2016
  • Mathematica
    CoefficientList[(Product[1 + k x^(2^(k - 1)), {k, 7}] - 1)/x, x] (* Michael De Vlieger, Apr 08 2016 *)
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];Table[Times@@bpe[n+1],{n,0,100}] (* Gus Wiseman, Jul 26 2019 *)
  • PARI
    N=166; q='q+O('q^N);
    gf= (prod(n=1,1+ceil(log(N)/log(2)), 1+n*q^(2^(n-1)) ) - 1) / q;
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
  • Scheme
    (define (A096111 n) (cond ((pow2? (+ n 1)) (+ 2 (A000523 n))) (else (* (+ 1 (A000523 n)) (A096111 (A053645 n))))))
    (define (pow2? n) (and (> n 0) (zero? (A004198bi n (- n 1)))))
    

Formula

G.f.: ( prod(k>=1, 1+k*x^(2^(k-1)) )- 1 ) / x. - Vladeta Jovovic, Nov 08 2005
a(n) is the product of the exponents in the binary expansion of 2*n + 2. - Peter Kagey, Apr 24 2016

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A078374 Number of partitions of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

The Heinz numbers of these partitions are given by A302796, which is the intersection of A005117 (strict) and A289509 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12):
  1   .  21   31   32   51    43    53    54    73     65     75     76
                   41   321   52    71    72    91     74     B1     85
                              61    431   81    532    83     543    94
                              421   521   432   541    92     651    A3
                                          531   631    A1     732    B2
                                          621   721    542    741    C1
                                                4321   632    831    643
                                                       641    921    652
                                                       731    5421   742
                                                       821    6321   751
                                                       5321          832
                                                                     841
                                                                     931
                                                                     A21
                                                                     5431
                                                                     6421
                                                                     7321
(End)
		

Crossrefs

Cf. A047966.
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A332004 is the ordered version.
A337452 is the case without 1's.
A000009 counts strict partitions.
A000740 counts relatively prime compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* Gus Wiseman, Oct 18 2020 *)

Formula

Moebius transform of A000009.
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - Ilya Gutkovskiy, Apr 26 2017

A326704 BII-numbers of antichains of nonempty sets.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 308, 320, 512, 513, 516, 520, 521, 524
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain of sets, no edge is a subset or superset of any other edge.

Examples

			The sequence of all antichains of nonempty sets together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  20: {{1,2},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  36: {{1,2},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains of sets are counted by A000372.
Antichains of nonempty sets are counted by A014466.
MM-numbers of antichains of multisets are A316476.
BII-numbers of chains of nonempty sets are A326703.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],stableQ[bpe/@bpe[#],SubsetQ]&]
  • Python
    # see linked program

A333227 Numbers k such that the k-th composition in standard order is pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2020

Keywords

Comments

This is the definition used for CoprimeQ in Mathematica.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          27: (1,2,1,1)      55: (1,2,1,1,1)
   3: (1,1)        28: (1,1,3)        56: (1,1,4)
   5: (2,1)        29: (1,1,2,1)      57: (1,1,3,1)
   6: (1,2)        30: (1,1,1,2)      59: (1,1,2,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    60: (1,1,1,3)
   9: (3,1)        33: (5,1)          61: (1,1,1,2,1)
  11: (2,1,1)      35: (4,1,1)        62: (1,1,1,1,2)
  12: (1,3)        37: (3,2,1)        63: (1,1,1,1,1,1)
  13: (1,2,1)      38: (3,1,2)        65: (6,1)
  14: (1,1,2)      39: (3,1,1,1)      66: (5,2)
  15: (1,1,1,1)    41: (2,3,1)        67: (5,1,1)
  17: (4,1)        44: (2,1,3)        68: (4,3)
  18: (3,2)        47: (2,1,1,1,1)    71: (4,1,1,1)
  19: (3,1,1)      48: (1,5)          72: (3,4)
  20: (2,3)        49: (1,4,1)        75: (3,2,1,1)
  23: (2,1,1,1)    50: (1,3,2)        77: (3,1,2,1)
  24: (1,4)        51: (1,3,1,1)      78: (3,1,1,2)
  25: (1,3,1)      52: (1,2,3)        79: (3,1,1,1,1)
		

Crossrefs

A different ranking of the same compositions is A326675.
Ignoring repeated parts gives A333228.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- q(k) has A124767(k) runs and A333381(k) anti-runs.
- The GCD of q(k) is A326674(k).
- The Heinz number of q(k) is A333219(k).
- The LCM of q(k) is A333226(k).
Coprime or singleton sets are ranked by A087087.
Strict compositions are ranked by A233564.
Constant compositions are ranked by A272919.
Relatively prime compositions appear to be ranked by A291166.
Normal compositions are ranked by A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@stc[#]&]

A326675 The positions of 1's in the reversed binary expansion of n are pairwise coprime, where a singleton is not coprime unless it is {1}.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 33, 48, 49, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 112, 113, 129, 132, 133, 144, 145, 148, 149, 192, 193, 196, 197, 208, 209, 212
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			41 has reversed binary expansion (1,0,0,1,0,1) with positions of 1's being {1,4,6}, which are not pairwise coprime, so 41 is not in the sequence.
		

Crossrefs

Equals the complement of A131577 in A087087.
Numbers whose prime indices are pairwise coprime are A302696.
Taking relatively prime instead of pairwise coprime gives A291166.

Programs

  • Maple
    extend:= proc(L) local C,c;
      C:= select(t -> andmap(s -> igcd(s,t)=1, L), [$1..L[-1]-1]);
      L, seq(procname([op(L),c]),c=C)
    end proc:
    g:= proc(L) local i;
      add(2^(i-1),i=L)
    end proc:
    map(g, [[1],seq(extend([k])[2..-1], k=2..10)]); # Robert Israel, Jul 19 2019
  • Mathematica
    Select[Range[100],CoprimeQ@@Join@@Position[Reverse[IntegerDigits[#,2]],1]&]
  • PARI
    is(n) = my (p=1); while (n, my (o=1+valuation(n,2)); if (gcd(p,o)>1, return (0), n-=2^(o-1); p*=o)); return (1) \\ Rémy Sigrist, Jul 19 2019

A333228 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

First differs from A291166 in lacking 69, which corresponds to the composition (4,2,1).
We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          21: (2,2,1)        39: (3,1,1,1)
   3: (1,1)        22: (2,1,2)        41: (2,3,1)
   5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
   6: (1,2)        24: (1,4)          44: (2,1,3)
   7: (1,1,1)      25: (1,3,1)        45: (2,1,2,1)
   9: (3,1)        26: (1,2,2)        46: (2,1,1,2)
  11: (2,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
  12: (1,3)        28: (1,1,3)        48: (1,5)
  13: (1,2,1)      29: (1,1,2,1)      49: (1,4,1)
  14: (1,1,2)      30: (1,1,1,2)      50: (1,3,2)
  15: (1,1,1,1)    31: (1,1,1,1,1)    51: (1,3,1,1)
  17: (4,1)        33: (5,1)          52: (1,2,3)
  18: (3,2)        35: (4,1,1)        53: (1,2,2,1)
  19: (3,1,1)      37: (3,2,1)        54: (1,2,1,2)
  20: (2,3)        38: (3,1,2)        55: (1,2,1,1,1)
		

Crossrefs

Pairwise coprime or singleton partitions are A051424.
Coprime or singleton sets are ranked by A087087.
The version for relatively prime instead of coprime appears to be A291166.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Not ignoring repeated parts gives A333227.
The complement is A335238.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@Union[stc[#]]&]

A302698 Number of integer partitions of n into relatively prime parts that are all greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 13, 7, 23, 18, 32, 33, 65, 50, 104, 92, 148, 153, 252, 226, 376, 376, 544, 570, 846, 821, 1237, 1276, 1736, 1869, 2552, 2643, 3659, 3887, 5067, 5509, 7244, 7672, 10086, 10909, 13756, 15168, 19195, 20735, 26237, 28708, 35418, 39207
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1 (which is impossible in this case).
The Heinz numbers of these partitions are given by A302697.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (73)    (65)     (75)
           (52)   (332)  (72)    (433)   (74)     (543)
           (322)         (432)   (532)   (83)     (552)
                         (522)   (3322)  (92)     (732)
                         (3222)          (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

A000837 is the version allowing 1's.
A002865 does not require relative primality.
A302697 gives the Heinz numbers of these partitions.
A337450 is the ordered version.
A337451 is the ordered strict version.
A337452 is the strict version.
A337485 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A332004 counts strict relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A338332 is the case of length 3, with strict case A338333.

Programs

  • Maple
    b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
          `if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 12 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}]
    (* Second program: *)
    b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]];
    a[n_] := b[n, n, 0];
    Array[a, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = A002865(n) - A018783(n).

Extensions

Extended by Gus Wiseman, Oct 29 2020

A326701 BII-numbers of set partitions.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 32, 33, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 512, 513, 520, 521, 528, 1024, 1032, 2048, 2049, 2050, 2051, 2052, 4096, 4098, 8192, 8193, 16384, 32768, 32769
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, and {{2},{1,3}} is a set partition, it follows that 18 belongs to the sequence.

Examples

			The sequence of all set partitions together with their BII numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  132: {{1,2},{4}}
  136: {{3},{4}}
		

Crossrefs

MM-numbers of set partitions are A302521.
BII-numbers of chains of nonempty sets are A326703.
BII-numbers of antichains of nonempty sets are A326704.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],UnsameQ@@Join@@bpe/@bpe[#]&]
  • Python
    from itertools import chain, count, combinations, islice
    from sympy.utilities.iterables import multiset_partitions
    def a_gen():
        yield 0
        for n in count(1):
            t = []
            for i in chain.from_iterable(combinations(range(1,n+1),r) for r in range(n+1)):
                if n in i:
                    for j in multiset_partitions(i):
                        t.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
            yield from sorted(t)
    A326701_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024
Showing 1-10 of 46 results. Next