cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A293217 Restricted growth sequence transform of A293216, where A293216(n) = Product_{d|n, dA260443(d).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 4, 8, 17, 18, 2, 19, 2, 20, 21, 22, 17, 23, 2, 13, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 31, 32, 33, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 27, 50, 51, 44, 52, 2, 53, 54, 55, 2, 56, 57, 58, 59, 60, 2, 61, 62, 63, 64, 65, 66, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A001065(i) = A001065(j).

Crossrefs

Cf. A001065, A260443, A293216, A293215 (a variant).

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A293216(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A260443(d))); m; };
    write_to_bfile(1,rgs_transform(vector(16384,n,A293216(n))),"b293217.txt");

A091954 Number of odd proper divisors of n. That is, the number of odd divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 3, 2, 3, 3, 1, 2, 3, 2, 1, 4, 1, 2, 5, 2, 1, 2, 2, 3, 3, 2, 1, 4, 3, 2, 3, 2, 1, 4, 1, 2, 5, 1, 3, 4, 1, 2, 3, 4, 1, 3, 1, 2, 5, 2, 3, 4, 1, 2, 4, 2, 1, 4, 3, 2, 3, 2, 1, 6, 3, 2, 3, 2, 3, 2, 1, 3, 5, 3, 1, 4, 1, 2, 7, 2, 1, 4, 1, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 12 2004

Keywords

Examples

			The odd divisors of 15 that are less than 15 are 1, 3 and 5. Therefore there are three odd divisors of 15 that are less than 15.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: this sequence (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: this sequence (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Mathematica
    Count[Most[Divisors[#]],?OddQ]&/@Range[100] (* _Harvey P. Dale, Sep 28 2012 *)
    a[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]] - Boole[OddQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    A091954(n) = sumdiv(n,d,(dAntti Karttunen, Oct 04 2017
    
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=2, N, x^k/(1-x^(2*k))))) \\ Seiichi Manyama, Jan 23 2021

Formula

From Antti Karttunen, Oct 04 2017: (Start)
a(n) = Sum_{d|n, dA000035(n).
a(n) = A001227(n) - A000035(n).
a(n) = A007814(A293214(n)) = A007814(A293216(n)).
(End)
G.f.: Sum_{k>=2} x^k/(1 - x^(2*k)). - Seiichi Manyama, Jan 23 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 26 2023

Extensions

Corrected and extended by Harvey P. Dale, Sep 28 2012

A293214 a(n) = Product_{d|n, dA019565(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 36, 2, 30, 12, 60, 2, 2700, 2, 180, 120, 210, 2, 7560, 2, 6300, 360, 252, 2, 661500, 20, 420, 168, 94500, 2, 23814000, 2, 2310, 504, 132, 600, 43659000, 2, 396, 840, 2425500, 2, 187110000, 2, 207900, 352800, 1980, 2, 560290500, 60, 194040, 264, 485100, 2, 115259760, 840, 254677500, 792, 4620, 2, 264737261250000, 2, 13860
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A001065, A002110, A019565, A048675, A091954, A292257, A293215 (restricted growth sequence transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A293214(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d).
a(n) = A300830(n) * A300831(n) * A300832(n). - Antti Karttunen, Mar 16 2018
Other identities.
For n >= 0, a(2^n) = A002110(n).
For n >= 1:
A048675(a(n)) = A001065(n).
A001222(a(n)) = A292257(n).
A007814(a(n)) = A091954(n).
A087207(a(n)) = A218403(n).
A248663(a(n)) = A227320(n).

A300834 a(n) = Product_{d|n, dA019565(A003714(d)), where A003714(n) is the n-th Fibbinary number.

Original entry on oeis.org

1, 2, 2, 6, 2, 30, 2, 60, 10, 42, 2, 4200, 2, 126, 70, 660, 2, 9240, 2, 13860, 210, 330, 2, 5082000, 14, 78, 220, 32760, 2, 3783780, 2, 42900, 550, 780, 294, 924924000, 2, 1092, 130, 41621580, 2, 3898440, 2, 112200, 60060, 306, 2, 28078050000, 42, 235620, 1300, 92820, 2, 200119920, 770, 128648520, 1820, 1122, 2, 424964656116000, 2, 3366
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2018

Keywords

Crossrefs

Cf. A003714, A019565, A300835 (rgs-transform of this sequence), A300836.

Programs

  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A300834(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A003714(d)))); m; };

Formula

a(n) = Product_{d|n, dA019565(A003714(d)).
For n >= 1, A001222(a(n)) = A300836(n).

A317837 a(n) = Sum_{d|n, dA002487(d).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 5, 1, 7, 1, 5, 6, 4, 1, 10, 1, 9, 6, 7, 1, 10, 4, 7, 7, 9, 1, 16, 1, 5, 8, 7, 7, 17, 1, 9, 8, 13, 1, 20, 1, 13, 14, 9, 1, 13, 4, 15, 8, 13, 1, 22, 9, 13, 10, 9, 1, 26, 1, 7, 18, 6, 9, 22, 1, 13, 10, 23, 1, 24, 1, 13, 17, 17, 9, 26, 1, 17, 15, 13, 1, 34, 9, 15, 10, 19, 1, 40, 9, 17, 8, 11, 11
Offset: 1

Views

Author

Antti Karttunen, Aug 09 2018

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A317837(n) = sumdiv(n,d,(dA002487(d));

Formula

a(n) = Sum_{d|n, dA002487(d).
a(n) = A317838(n) - A002487(n).
a(n) = A001222(A293216(n)).

A317942 a(n) = Product_{d|n, dA286378(d)-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 8, 6, 20, 2, 72, 2, 28, 30, 16, 2, 396, 2, 200, 42, 52, 2, 432, 10, 68, 66, 392, 2, 17100, 2, 32, 78, 92, 70, 26136, 2, 116, 102, 2000, 2, 54684, 2, 1352, 6270, 148, 2, 2592, 14, 3700, 138, 2312, 2, 178596, 130, 5488, 174, 172, 2, 9747000, 2, 188, 14322, 64, 170, 322452, 2, 4232, 222, 289100, 2, 1724976, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A286378, A317943 (restricted growth sequence transform), A317944.
Cf. also A293216, A305792.

Programs

  • PARI
    \\ Needs also code from A286378:
    A317942(n) = { my(m=1); fordiv(n,d,if(dA286378(d)-1))); (m); };

Formula

a(n) = Product_{d|n, dA008578(A286378(d)).
For all k >= 0, a(2^k) = 2^k.

A318470 Multiplicative with a(p^e) = A260443(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 18, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 36, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Differs from A293442 for the first time at n=32, where a(32) = 18, while A293442(32) = 10.

Programs

Formula

For all n >= 1, A001222(a(n)) = A318306(n).
Showing 1-7 of 7 results.