cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A295185 a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.

Original entry on oeis.org

6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3

Views

Author

David James Sycamore, Nov 16 2017

Keywords

Comments

Sequence is undefined for n=1,2 since no composites exist whose prime divisors sum to 2, 3. For n >= 3, a(n) = A288814(prime(n)) = prime(n-k)*B(prime(n) - prime(n-k)) where B=A056240, and k >= 1 is the "type" of prime(n), indicated as prime(n)~k(g1,g2,...,gk) where gi = prime(n-(i-1)) - prime(n-i); 1 <= i <= k. Thus: 5~1(2), 211~2(12,2), 4327~3(30,8,6) etc. The sequence relates to gaps between odd primes, and in particular to the sequence of k prime gaps below prime(n). The even-indexed terms of B are relevant, as are those of subsequences:
C=A288313, 2,4 plus terms B(n) where n-3 is prime (A298252),
D=A297150, terms B(n) where n-5 is prime and n-3 is composite (A297925) and
E=A298615, terms B(n) where both n-3 and n-5 are composite (A298366).
The above sequences of indices 2m form a partition of the even numbers and the corresponding terms B(2m) form a partition of the even-indexed terms of A056240. The union of D and E is the sequence A292081 = B-C.
Let g(n,t) = prime(n) - prime(n-t), t < n, and h(n,t) = g(n,t) - g(n,1), 1 < t < n. If g1=g(n,1) is a term in A298252 (g1-3 is prime), then B(g1) is a term in C, so k=1. If g1 belongs to A297925 or A298366 then B(g1) is a term in D or E and the value of k depends on subsequent gaps below prime(n), within a range dependent on g1.
Let range R1(g1) = u - g(n,1) where u is the index in B of the greatest term in C such that C(u) < B(g1). Let range R2(g1) = v-g(n,1) where v is the index in B of the greatest term in D such that D(v) <= B(g1). For all n, R2 < R1, and if g1 is a term in D then R2(g1)=0. Examples: R1(12)=2, R2(12)=0, R1(30)=26, R2(30)=6.
k >= 1 is the smallest integer such that B(g(n,k)) <= B(g(n,t)) for all t satisfying g1 <= g(n,t) <= g1 + R1(g1). For g1-3 prime, k=1. If g1-3 is composite, let z be least integer > 1 such that g(n,z)-3 is prime, and let w be least integer >= 1 such that g(n,w)-5 is prime. Then z "complies" if h(n,z) <= R1, and w "complies" if h(n,w) <= R2. If g1-5 is prime then R2=w=0 and only z is relevant.
B(g1) must belong to C,D or E. If in C (g1-3 is prime) then k=1. If in D (g1-5 is prime), k=z if z complies, otherwise k=1. If B(g1) is in E and z complies but not w then k=z, or if w complies but not z then k=w. If B(g1) is in E and z,w both comply then k=z if 3*(g(n,z)-3) < 5*(g(n,w)-5), otherwise k=w. If neither z nor w comply, then k=1.
Conjecture: For all n >= 3, a(n) >= A288189(n).

Examples

			5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply  but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
    a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
    Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
  • PARI
    a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017

Formula

a(n) = A288814(prime(n)) = prime(n-k)*A056240(prime(n) - prime(n-k)) for some k >= 1 and prime(n-k) = gpf(A288814(prime(n)).
a(n) >= A288189(n).

A297925 Even numbers k such that k - 5 is prime but k - 3 is not prime.

Original entry on oeis.org

12, 18, 24, 28, 36, 42, 48, 52, 58, 66, 72, 78, 84, 88, 94, 102, 108, 114, 118, 132, 136, 144, 156, 162, 168, 172, 178, 186, 198, 204, 216, 228, 234, 238, 246, 256, 262, 268, 276, 282, 288, 298, 312, 318, 322, 336, 342, 354, 358, 364, 372, 378, 384, 388, 394, 402, 406, 414, 426, 438, 444, 448, 454
Offset: 1

Views

Author

David James Sycamore, Jan 08 2018

Keywords

Comments

Even numbers that are the sum of 5 and another prime, but not the sum of 3 and another prime. For n >= 1, a(n) - 5 = A049591(n), a(n) - 3 = A107986(n+1).
Let r(n) = a(n) - 5, Then r(n) is the greatest prime < a(n), and therefore A056240(a(n)) = 5*r(n). Furthermore, since r(n) + 2 must be composite, A056240(a(n)) = 5*A049591(n).
The terms in this sequence, combined with those in A298366 and A298252 form a partition of A005843(n);n>=3 (nonnegative even numbers>=6). This is because any even integer n>=6 satisfies either (i) n-3 is prime, (ii) n-5 is prime but n-3 is composite, or (iii) both n-5 and n-3 are composite.

Examples

			12 is a term because 12 - 5 = 7 is prime, and 12 - 3 = 9 is composite. Also A049591(1)+5=7+5=12 and A107986(2)+3=9+3=12.
18 is a term because 18 - 5 = 13 is prime, and 18 - 3 = 15 is composite.
16 is not a term because 16 - 5 = 11 and 16 - 3 = 13 are both prime.
		

Crossrefs

Similar to A130038. Subsequence of A175222.

Programs

  • GAP
    Filtered([8..500], k-> IsPrime(k-5) and not IsPrime(k-3) and (k mod 2)=0); # G. C. Greubel, May 21 2019
  • Magma
    [n: n in [3..500] | IsPrime(n-5) and not IsPrime(n-3) and (n mod 2) eq 0]; // G. C. Greubel, May 21 2019
    
  • Maple
    N:=100
    for n from 8 to N by 2 do
    if isprime(n-5) and not isprime(n-3) then print (n);
    end if
    end do
  • Mathematica
    Select[Range[6, 500, 2], And[PrimeQ[# - 5], ! PrimeQ[# - 3]] &] (* Michael De Vlieger, Jan 10 2018 *)
    Select[Range[6, 500, 2], Boole[PrimeQ[# -{5, 3}]] == {1, 0} &] (* Harvey P. Dale, Jan 30 2024 *)
  • PARI
    isok(n) = !(n % 2) && isprime(n-5) && !isprime(n-3); \\ Michel Marcus, Jan 09 2018
    
  • Sage
    [n for n in (3..500) if is_prime(n-5) and not is_prime(n-3) and (mod(n, 2)==0)] # G. C. Greubel, May 21 2019
    

Formula

a(n) = A049591(n) + 5 = A107986(n+1) + 3 for all n >= 1.

A298252 Even integers n such that n-3 is prime.

Original entry on oeis.org

6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 40, 44, 46, 50, 56, 62, 64, 70, 74, 76, 82, 86, 92, 100, 104, 106, 110, 112, 116, 130, 134, 140, 142, 152, 154, 160, 166, 170, 176, 182, 184, 194, 196, 200, 202, 214, 226, 230, 232, 236, 242, 244, 254, 260, 266, 272, 274, 280
Offset: 1

Views

Author

David James Sycamore, Jan 15 2018

Keywords

Comments

Subsequence of A005843, same as A113935 with first term (5) excluded, since it is odd, not even. Index in A056240 of terms in A288313 (except for first two terms 2,4 of latter).
The terms in this sequence, combined with those in A297925 and A298366 form a partition of A005843(n); n>=3 (nonnegative numbers>=6). This is because any even integer n>=6 satisfies either(i) n-3 is prime, (ii) n-5 prime but n-3 composite, or (iii) n-5 and n-3 both composite.
a(n) is the smallest even number e > prime(n+1) such that e has a Goldbach partition containing prime(n+1). - Felix Fröhlich, Aug 18 2019

Examples

			a(1)=6 because 6-3=3; prime, and no smaller even number has this property; also a(1)=A113935(2)=6.  a(2)=8 because 8-3=5 is prime; also A113935(3)=8.
12 is not in the sequence because 12-3 = 9, composite.
		

Crossrefs

Programs

  • GAP
    Filtered([1..300],n->IsEvenInt(n) and IsPrime(n-3)); # Muniru A Asiru, Mar 23 2018
    
  • Magma
    [NthPrime(n+1) +3: n in [1..70]]; // G. C. Greubel, May 21 2019
    
  • Maple
    N:=200
      for n from 6 to N by 2 do
    if isprime(n-3) then print(n);
    end if
    end do
  • Mathematica
    Select[2 Range@125, PrimeQ[# - 3] &] (* Robert G. Wilson v, Jan 15 2018 *)
    Select[Prime[Range[100]]+3,EvenQ] (* Harvey P. Dale, Mar 07 2022 *)
  • PARI
    a(n) = prime(n + 1) + 3 \\ David A. Corneth, Mar 23 2018
    
  • Sage
    [nth_prime(n+1) +3 for n in (1..70)] # G. C. Greubel, May 21 2019

Formula

a(n) = A113935(n+1), n>=1.
A056240(a(n)) = A288313(n+2).
a(n) = prime(n + 1) + 3 = A113935(n + 1). - David A. Corneth, Mar 23 2018

A298615 Let b(k) be A056240(k); this sequence lists numbers b(2n) such that there is at least one m > n for which b(2m) < b(2n) belongs to A297150.

Original entry on oeis.org

161, 217, 329, 371, 427, 511, 581, 623, 1246, 791, 1417, 1243, 1469, 2071, 917, 973, 1507, 1529, 1057, 1099, 1169, 1211, 1267, 1969, 1991, 1393, 2167, 2189, 2587, 1477, 2954, 2321, 2743, 1631, 1687, 2629, 2651, 1757, 1799, 1841, 1897, 1981, 3091, 3113, 2051, 4102
Offset: 1

Views

Author

David James Sycamore, Jan 26 2018

Keywords

Comments

For even number n, if n-5 and n-3 are both composite then A056240(n) belongs to this sequence. The union of terms in this sequence together with those in A288313 and A297150 combine to make A056240(2n), for n >= 3. A288313(n) = A056240(A298252(n)), A297150(n) = A056240(A297925(n)), and the terms of this sequence correspond to A056240(A298366). Distinct sequences A298252, A297925 and A298366 form a partition of the nonnegative even integers (A005843) >= 6. These partitions holds because any even integer n >= 6 is such that, either n-3 is prime (A298252), or n-5 is prime but n-3 is composite (A297925), or both n-5 and n-3 are composite (A298366).

Examples

			n=1, a(1) = A056240(A298366(1)) = A056240(30) = 161;
n=24, a(24) = A056240(A298366(24)) = A056240(190) = 1969.
		

Crossrefs

Programs

  • PARI
    A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m, A056240(n-p)*p), ); m);
    is_A298366(n)= !isprime(n-5) && !isprime(n-3) && !(n%2) && (n>5);
    lista(nn) = {for (n=0, nn, if (is_A298366(n), print1(A056240(n), ", ")););} \\ Michel Marcus, Apr 03 2020

Formula

a(n) = A056240(A298366(n)).
Showing 1-4 of 4 results.