A295185
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.
Original entry on oeis.org
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
Cf.
A000040,
A056240,
A288814,
A292081,
A289993,
A288313,
A297150,
A298615,
A298252,
A297925,
A298366,
A288189.
-
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
-
a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
A298252
Even integers n such that n-3 is prime.
Original entry on oeis.org
6, 8, 10, 14, 16, 20, 22, 26, 32, 34, 40, 44, 46, 50, 56, 62, 64, 70, 74, 76, 82, 86, 92, 100, 104, 106, 110, 112, 116, 130, 134, 140, 142, 152, 154, 160, 166, 170, 176, 182, 184, 194, 196, 200, 202, 214, 226, 230, 232, 236, 242, 244, 254, 260, 266, 272, 274, 280
Offset: 1
a(1)=6 because 6-3=3; prime, and no smaller even number has this property; also a(1)=A113935(2)=6. a(2)=8 because 8-3=5 is prime; also A113935(3)=8.
12 is not in the sequence because 12-3 = 9, composite.
-
Filtered([1..300],n->IsEvenInt(n) and IsPrime(n-3)); # Muniru A Asiru, Mar 23 2018
-
[NthPrime(n+1) +3: n in [1..70]]; // G. C. Greubel, May 21 2019
-
N:=200
for n from 6 to N by 2 do
if isprime(n-3) then print(n);
end if
end do
-
Select[2 Range@125, PrimeQ[# - 3] &] (* Robert G. Wilson v, Jan 15 2018 *)
Select[Prime[Range[100]]+3,EvenQ] (* Harvey P. Dale, Mar 07 2022 *)
-
a(n) = prime(n + 1) + 3 \\ David A. Corneth, Mar 23 2018
-
[nth_prime(n+1) +3 for n in (1..70)] # G. C. Greubel, May 21 2019
A298366
Even numbers n such that n-5 and n-3 are both composite.
Original entry on oeis.org
30, 38, 54, 60, 68, 80, 90, 96, 98, 120, 122, 124, 126, 128, 138, 146, 148, 150, 158, 164, 174, 180, 188, 190, 192, 206, 208, 210, 212, 218, 220, 222, 224, 240, 248, 250, 252, 258, 264, 270, 278, 290, 292, 294, 300, 302, 304, 306, 308, 324, 326, 328, 330, 332, 338, 344, 346, 348, 360, 366, 368, 374, 380
Offset: 1
30 is included because 30-5 = 25, and 30-3 = 27; both composite, and 30 is the smallest even number with this property, hence a(1)=30. Also, A056240(a(1)) = A056240(30) = 161 = A298615(1). 24 is not included because although 24 - 3 = 21, composite; 24 - 5 = 19, prime. 210 is in this sequence, since 205 and 207 are both composite. 113 is the first prime to have a gap 14 ahead of it. Therefore we would expect a run of (14 - 4)/2 = 5 consecutive terms to start at 7 + A000230(7) = 113 + 7 = 120; thus: 120,122,124,126,128. Likewise the first occurrence of run length 7 occurs at gap m = 2*7 + 4 = 18, namely the term corresponding to 7 + A000230(9) = 523 + 7 = 530; thus: 530,532,534,536,538,540,542.
-
[2*n: n in [8..200] | not IsPrime(2*n-5) and not IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 16 2018
-
N:=300:
for n from 8 to N by 2 do
if not isprime(n-5) and not isprime(n-3) then print(n);
end if
end do
-
Rest[2 Select[Range[250], !PrimeQ[2 # - 5] && !PrimeQ[2 # - 3] &]] (* Vincenzo Librandi, Nov 16 2018 *)
Select[Range[2,400,2],AllTrue[#-{3,5},CompositeQ]&] (* Harvey P. Dale, Jul 01 2025 *)
-
select( is_A298366(n)=!(isprime(n-5)||isprime(n-3)||bitand(n,1)||n<9), [5..200]*2) \\ Last 2 conditions aren't needed if n > 4 and even. - M. F. Hasler, Nov 19 2018 and Apr 07 2020 after edit by Michel Marcus, Apr 04 2020
A297150
Let b(k) denote A292081(k); the sequence lists numbers b(2n) where for all m > n, b(2m) > b(2n).
Original entry on oeis.org
35, 65, 95, 115, 155, 185, 215, 235, 265, 305, 335, 365, 395, 415, 445, 485, 515, 545, 565, 635, 655, 695, 755, 785, 815, 835, 865, 905, 965, 995, 1055, 1115, 1145, 1165, 1205, 1255, 1285, 1315, 1355, 1385, 1415, 1465, 1535, 1565, 1585, 1655, 1685, 1745, 1765, 1795, 1835, 1865, 1895, 1915, 1945, 1985
Offset: 1
a(1)=5*A049591(1)=5*7=35. Also A056240(A297925(1))=A056240(12)=35.
a(17)=5*A049591(17)=5*103=515. Also A056240(A297925(17))=A056240(108)=515.
-
[5*p: p in PrimesInInterval(3, 500) | not IsPrime(p + 2)]; // Vincenzo Librandi, Nov 12 2018
-
5 Select[Prime[Range[3, 100]], ! PrimeQ[(# + 2)] &] (* Vincenzo Librandi, Nov 12 2018 *)
A298615
Let b(k) be A056240(k); this sequence lists numbers b(2n) such that there is at least one m > n for which b(2m) < b(2n) belongs to A297150.
Original entry on oeis.org
161, 217, 329, 371, 427, 511, 581, 623, 1246, 791, 1417, 1243, 1469, 2071, 917, 973, 1507, 1529, 1057, 1099, 1169, 1211, 1267, 1969, 1991, 1393, 2167, 2189, 2587, 1477, 2954, 2321, 2743, 1631, 1687, 2629, 2651, 1757, 1799, 1841, 1897, 1981, 3091, 3113, 2051, 4102
Offset: 1
n=1, a(1) = A056240(A298366(1)) = A056240(30) = 161;
n=24, a(24) = A056240(A298366(24)) = A056240(190) = 1969.
-
A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m, A056240(n-p)*p), ); m);
is_A298366(n)= !isprime(n-5) && !isprime(n-3) && !(n%2) && (n>5);
lista(nn) = {for (n=0, nn, if (is_A298366(n), print1(A056240(n), ", ")););} \\ Michel Marcus, Apr 03 2020
Showing 1-5 of 5 results.
Comments