cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A296150 Triangle whose n-th row is the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 1, 2, 2, 3, 1, 5, 2, 1, 1, 6, 4, 1, 3, 2, 1, 1, 1, 1, 7, 2, 2, 1, 8, 3, 1, 1, 4, 2, 5, 1, 9, 2, 1, 1, 1, 3, 3, 6, 1, 2, 2, 2, 4, 1, 1, 10, 3, 2, 1, 11, 1, 1, 1, 1, 1, 5, 2, 7, 1, 4, 3, 2, 2, 1, 1, 12, 8, 1, 6, 2, 3, 1, 1, 1, 13, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

Same as A112798 with rows reversed. Row lengths are A001222. Rows sums are A056239.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions begins: (), (1), (2), (11), (3), (21), (4), (111), (22), (31), (5), (211), (6), (41), (32), (1111), (7), (221).
		

Crossrefs

Programs

  • Maple
    f := n -> op(map(numtheory:-pi, sort(map(`$`@op, ifactors(n)[2]), `>`))):
    map(f, [$1..100]); # Robert Israel, Feb 09 2018
  • Mathematica
    Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,50}]

A300061 Heinz numbers of integer partitions of even numbers.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 30, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 66, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 112, 113, 115, 116, 117, 118, 120
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			75 is the Heinz number of (3,3,2), which has even weight, so 75 belongs to the sequence.
Sequence of even-weight partitions begins: () (2) (1,1) (4) (2,2) (3,1) (2,1,1) (6) (1,1,1,1) (8) (4,2) (5,1) (3,3) (2,2,2) (4,1,1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while add(numtheory[pi]
          (i[1])*i[2], i=ifactors(k)[2])::odd do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    Select[Range[200],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&]

A300383 In the ranked poset of integer partitions ordered by refinement, a(n) is the size of the lower ideal generated by the partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 3, 3, 7, 2, 11, 5, 5, 1, 15, 3, 22, 3, 8, 7, 30, 2, 6, 11, 4, 5, 42, 5, 56, 1, 11, 15, 11, 3, 77, 22, 17, 3, 101, 8, 135, 7, 7, 30, 176, 2, 14, 6, 23, 11, 231, 4, 15, 5, 33, 42, 297, 5, 385, 56, 11, 1, 23, 11, 490, 15, 45, 11, 627, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The size of the corresponding upper ideal is A317141(n). Chains are A213427(n) and maximal chains are A002846(n).

Examples

			The a(30) = 5 partitions are (321), (2211), (3111), (21111), (111111), with corresponding Heinz numbers: 30, 36, 40, 48, 64.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[n]]]],{n,50}]

Formula

a(prime(n)) = A000041(n).
a(x * y) <= a(x) * a(y).

A300273 Sorted list of Heinz numbers of collapsible integer partitions.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2018

Keywords

Comments

A positive integer is in this sequence iff it can be reduced to a prime number by a sequence of collapses, where a collapse is a replacement of prime(n)^k with prime(n*k) in a number's prime factorization (k > 1).

Examples

			A sequence of collapses is 84 -> 63 -> 49 -> 19 corresponding to the sequence of partitions (4211) -> (422) -> (44) -> (8). Hence 84 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    repcaps[q_]:=Union[{q},If[SquareFreeQ[q],{},Union@@repcaps/@Union[Times[q/#,Prime[Plus@@primeMS[#]]]&/@Select[Rest[Divisors[q]],!PrimeQ[#]&&PrimePowerQ[#]&]]]];
    Select[Range[200],MemberQ[repcaps[#],_?PrimeQ]&]

A296188 Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 8, 1, 6, 12, 16, 6, 32, 32, 28, 1, 64, 16, 128, 24, 96, 80, 256, 8, 44, 192, 22, 80, 512, 96, 1024, 1, 288, 448, 224, 30, 2048, 1024, 800, 40, 4096, 400, 8192, 240, 168, 2304, 16384, 10, 360, 204, 2112, 672, 32768, 68, 832, 160, 5376, 5120
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2018

Keywords

Comments

A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 6 tableaux:
1 3   1 2   1 2   1 2   1 1   1 1
2 4   3 4   3 3   2 3   2 3   2 2
		

References

  • Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.

Crossrefs

Programs

  • Mathematica
    conj[y_List]:=If[Length[y]===0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    conj[n_Integer]:=Times@@Prime/@conj[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ssyt[n_]:=If[n===1,1,Sum[ssyt[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
    Table[ssyt[conj[n]],{n,50}]

Formula

Let b(n) = Sum_{d|n, d>1} b(n * d' / d) where if d = Product_i prime(s_i)^m(i) then d' = Product_i prime(s_i - 1)^m(i) and prime(0) = 1. Then a(n) = b(conj(n)) where conj = A122111.

A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..82);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ Michel Marcus, Feb 26 2018

Formula

Multiplicative with a(prime(n)) = A000041(n).

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).

A381636 Numbers whose prime indices cannot be partitioned into constant blocks with distinct sums.

Original entry on oeis.org

12, 60, 63, 84, 120, 126, 132, 156, 204, 228, 252, 276, 300, 315, 325, 348, 372, 420, 444, 492, 504, 516, 560, 564, 588, 630, 636, 650, 660, 693, 708, 720, 732, 780, 804, 819, 840, 852, 876, 924, 931, 948, 975, 996, 1008, 1020, 1068, 1071, 1092, 1140, 1164
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that cannot be written as a product of prime powers > 1 with distinct sums of prime indices (A056239).
Contains no squarefree numbers.
Conjecture: These are the zeros of A382876.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with partitions into constant blocks:
  {{2},{1,1},{3,3}}
  {{1},{1},{2},{3,3}}
  {{2},{3},{3},{1,1}}
  {{1},{1},{2},{3},{3}}
but none of these has distinct block-sums, so 300 is in the sequence.
The terms together with their prime indices begin:
   12: {1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   84: {1,1,2,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  156: {1,1,2,6}
  204: {1,1,2,7}
  228: {1,1,2,8}
  252: {1,1,2,2,4}
  276: {1,1,2,9}
  300: {1,1,2,3,3}
		

Crossrefs

More on multiset partitions into constant blocks: A006171, A279784, A295935.
These are the positions of 0 in A381635, after taking block-sums A381716.
Partitions of this type are counted by A381717.
For strict instead of constant blocks we have A381806, zeros of A381633.
For equal instead of distinct block-sums we have A381871.
A000688 counts multiset partitions into constant, see A381455 (upper), A381453 (lower).
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A050361 counts multiset partitions into distinct constant blocks, after sums A381715.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Select[Range[100],Select[pfacs[#],UnsameQ@@hwt/@#&]=={}&]

A381633 Number of ways to partition the prime indices of n into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2025

Keywords

Comments

First differs from A050326 at 30, 60, 70, 90, ...
First differs from A339742 at 42, 66, 78, 84, ...
First differs from A381634 at a(210) = 12, A381634(210) = 10.
Also the number of factorizations on n into squarefree numbers > 1 with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The A050320(60) = 6 ways to partition {1,1,2,3} into sets are:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
Of these, only the following have distinct block-sums:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
So a(60) = 3.
		

Crossrefs

Without distinct block-sums we have A050320, after sums A381078 (lower A381454).
For distinct blocks instead of sums we have A050326, after sums A381441, see A358914.
Taking block-sums (and sorting) gives A381634.
For constant instead of strict blocks we have A381635, see A381716, A381636.
Positions of 0 are A381806, superset of A293243.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A001055 count multiset partitions of prime indices, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[sfacs[n],UnsameQ@@hwt/@#&]],{n,100}]

A381635 Number of ways to partition the prime indices of n into constant blocks with distinct sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2025

Keywords

Comments

First differs from A381716 at a(1728) = 5, A381716(1728) = 4.
Also the number of factorizations on n into prime powers > 1 with distinct sums of prime indices (A056239).

Examples

			The a(432) = 3 multiset partitions:
  {{2,2,2},{1,1,1,1}}
  {{1},{1,1,1},{2,2,2}}
  {{1},{2},{2,2},{1,1,1}}
Note {{2},{2,2},{1,1,1,1}} is not included, as it does not have distinct block-sums.
		

Crossrefs

Without distinct block-sums we have A000688, after sums A381455 (upper), A381453 (lower).
For distinct blocks instead of sums we have A050361, after sums A381715.
For strict instead of constant we have A381633 (zeros A381806), after sums A381634.
Positions of 0 are A381636.
Taking block-sums (and sorting) gives A381716.
Other multiset partitions of prime indices:
More on multiset partitions into constant blocks: A006171, A279784, A295935.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Select[pfacs[n],UnsameQ@@hwt/@#&]],{n,100}]
Showing 1-10 of 53 results. Next