cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A136271 Decimal expansion of sum log(p)/p^2 over the primes p=2,3,5,7,11,...

Original entry on oeis.org

4, 9, 3, 0, 9, 1, 1, 0, 9, 3, 6, 8, 7, 6, 4, 4, 6, 2, 1, 9, 7, 8, 2, 6, 2, 0, 5, 0, 5, 6, 4, 9, 1, 2, 5, 8, 0, 5, 5, 5, 8, 8, 1, 2, 6, 3, 4, 6, 4, 6, 8, 2, 9, 0, 7, 1, 3, 3, 2, 7, 1, 2, 0, 3, 2, 1, 3, 3, 6, 7, 7, 3, 6, 7, 9, 5, 7, 8, 5, 2, 0, 3, 5, 5, 0, 7, 6, 0, 0, 4, 2, 1, 8, 1, 6, 9, 3, 1, 1, 2, 4, 2, 4, 6
Offset: 0

Views

Author

R. J. Mathar, Mar 09 2008

Keywords

Comments

The negative first derivative of the prime zeta function at 2.

Examples

			0.493091109368764462197826205056491258055588126346468290713327120321336...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

Formula

Equals Sum_{n >= 1} log(A000040(n))/A001248(n).

Extensions

Removed 6 digits where preprints disagree. Added zero to an A-number in formula. Corrected Cohen preprint year. Added 2nd link. - R. J. Mathar, Nov 27 2008
More digits from Jean-François Alcover, Sep 11 2015

A303499 Decimal expansion of Sum_{p prime} log(p)/p^9.

Original entry on oeis.org

0, 0, 1, 4, 1, 0, 4, 9, 1, 9, 2, 1, 4, 2, 4, 5, 3, 1, 2, 9, 1, 5, 5, 4, 1, 9, 6, 4, 5, 6, 3, 0, 8, 1, 9, 9, 9, 7, 7, 9, 0, 1, 6, 5, 7, 1, 3, 1, 6, 9, 3, 4, 9, 6, 1, 9, 2, 8, 3, 6, 5, 0, 0, 8, 2, 8, 7, 7, 9, 8, 3, 9, 8, 7, 8, 9, 0, 0, 7, 5, 5, 5, 7, 2, 9, 1, 3, 8, 4, 9, 9, 1, 7, 0, 6, 0, 0, 6, 6, 9, 6, 3, 8, 6, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 9.

Examples

			0.0014104919214245312915541964563081999779016571316934961928365008287798...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[9], 10, 103][[1]]
  • PARI
    suminf(n=1, p=prime(n); log(p)/p^9) \\ Michel Marcus, Apr 25 2018

A303494 Decimal expansion of Sum_{p prime} log(p)/p^4.

Original entry on oeis.org

0, 6, 0, 6, 0, 7, 6, 3, 3, 3, 5, 0, 7, 7, 0, 0, 6, 3, 3, 9, 2, 2, 3, 0, 9, 8, 3, 7, 0, 9, 7, 1, 3, 3, 7, 8, 4, 0, 6, 3, 8, 2, 8, 7, 7, 4, 6, 1, 2, 5, 9, 8, 4, 3, 9, 9, 1, 1, 2, 7, 6, 8, 1, 7, 3, 4, 1, 5, 2, 6, 7, 6, 7, 8, 4, 5, 3, 9, 9, 6, 7, 9, 2, 5, 9, 0, 8, 1, 3, 8, 1, 5, 4, 9, 8, 2, 5, 5, 5, 7, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 4.

Examples

			0.060607633350770063392230983709713378406382877461259843991127681734...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[4], 10, 100][[1]]

A303495 Decimal expansion of Sum_{p prime} log(p)/p^5.

Original entry on oeis.org

0, 2, 6, 8, 3, 8, 6, 0, 1, 2, 7, 6, 7, 9, 8, 3, 5, 7, 4, 2, 2, 1, 8, 7, 5, 1, 3, 2, 9, 2, 4, 5, 0, 1, 5, 9, 9, 4, 3, 3, 3, 0, 1, 4, 9, 5, 5, 3, 5, 5, 8, 2, 2, 8, 1, 2, 4, 8, 1, 9, 8, 0, 3, 6, 0, 0, 3, 3, 5, 1, 1, 5, 7, 2, 3, 9, 8, 6, 1, 4, 6, 5, 6, 6, 8, 6, 2, 2, 8, 3, 2, 2, 6, 3, 6, 3, 0, 4, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the prime zeta function at 5.

Examples

			0.0268386012767983574221875132924501599433301495535582281248198036...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[5], 10, 99][[1]]

A303496 Decimal expansion of Sum_{p prime} log(p)/p^6.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 0, 8, 0, 7, 2, 2, 7, 9, 9, 9, 9, 1, 5, 2, 7, 0, 2, 7, 7, 9, 2, 7, 7, 4, 6, 8, 9, 9, 7, 0, 0, 4, 0, 9, 1, 1, 3, 5, 0, 4, 7, 1, 5, 7, 5, 8, 7, 5, 8, 7, 4, 1, 0, 9, 3, 3, 4, 0, 3, 5, 1, 2, 3, 3, 9, 9, 7, 9, 5, 2, 0, 7, 0, 2, 5, 7, 1, 9, 4, 0, 6, 4, 0, 0, 8, 6, 1, 3, 1, 1, 1, 3, 9, 1, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the prime zeta function at 6.

Examples

			0.012459080722799991527027792774689970040911350471575875874109334035...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[6], 10, 100][[1]]

A303497 Decimal expansion of Sum_{p prime} log(p)/p^7.

Original entry on oeis.org

0, 0, 5, 9, 4, 0, 6, 8, 9, 0, 3, 9, 1, 4, 8, 1, 9, 6, 1, 4, 2, 5, 5, 0, 5, 9, 2, 8, 2, 9, 0, 1, 6, 6, 0, 9, 0, 1, 9, 3, 6, 8, 1, 8, 9, 5, 0, 5, 9, 2, 9, 3, 5, 1, 0, 7, 5, 1, 6, 6, 8, 1, 3, 1, 6, 9, 8, 8, 8, 9, 8, 3, 4, 6, 0, 2, 5, 7, 9, 7, 5, 8, 4, 2, 6, 9, 1, 2, 1, 8, 4, 0, 2, 0, 5, 3, 2, 5, 0, 8, 9, 2, 4, 1, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 7.

Examples

			0.00594068903914819614255059282901660901936818950592935107516681316988898...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[7], 10, 103][[1]]

A303498 Decimal expansion of Sum_{p prime} log(p)/p^8.

Original entry on oeis.org

0, 0, 2, 8, 7, 9, 5, 2, 4, 7, 0, 8, 7, 2, 9, 2, 4, 7, 3, 9, 1, 3, 4, 6, 0, 2, 8, 4, 2, 3, 8, 5, 7, 3, 3, 4, 0, 6, 4, 9, 9, 8, 9, 8, 3, 7, 6, 1, 6, 7, 5, 8, 6, 5, 8, 4, 1, 0, 6, 7, 6, 1, 8, 2, 8, 6, 1, 8, 5, 3, 2, 1, 4, 8, 1, 5, 4, 1, 8, 3, 9, 9, 5, 0, 4, 8, 1, 2, 7, 5, 6, 6, 2, 9, 6, 5, 0, 6, 8, 2, 7, 7, 4, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 8.

Examples

			0.00287952470872924739134602842385733406499898376167586584106761828618532...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[8], 10, 103][[1]]
  • PARI
    suminf(n=1, p=prime(n); log(p)/p^8) \\ Michel Marcus, Apr 25 2018

A363368 Decimal expansion of Sum_{primes p} 1/(p*log(p)*log(log(p))).

Original entry on oeis.org

1, 9, 0, 6, 9, 7, 3, 8, 4, 8, 0, 3, 4, 9, 5, 4, 4, 1, 7, 7, 8, 7, 5, 7, 9, 6, 6, 9, 6, 5, 1, 9, 6, 4, 0, 3, 3, 6, 1, 8, 9, 3, 8, 3, 5, 2, 2, 9, 4, 8, 5, 3, 6, 6, 0, 5, 5, 9, 5, 2, 4, 2, 9, 4, 7, 1, 4, 5, 6, 7, 8, 3, 1, 2, 9, 2, 5, 2, 2, 4, 4, 1, 0, 9, 2, 3, 1, 8, 7, 1, 9, 4, 1, 3, 3, 4, 1, 6, 4, 8, 2, 2, 4, 2, 3
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Bill Allombert and confirmed by Pascal Sebah.

Examples

			1.9069738480349544...
		

Crossrefs

Programs

  • PARI
    /* author Bill Allombert */
    \p150
    pz(x, ex=0)=
    {
    my(s=bitprecision(x));
    my(B=s/real(polcoef(x, 0))+ex);
    sum(n=1, B, my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
    }
    my(P=primes([2, 61])); intnum(x=1, [oo, log(67)], (pz(x)-vecsum([p^-x|p<-P]))*intnum(s=0, [oo, 1], (x-1)^s/gamma(1+s))) + vecsum([1/p/log(p)/log(log(p))|p<-P])

A361089 a(n) = smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n.

Original entry on oeis.org

3, 5, 8, 21, 76, 389, 2679, 23969, 269777, 3717613, 61326301, 1188642478, 26651213526, 682263659097, 19720607003199, 637490095320530, 22857266906194526, 902495758030572213, 38993221443197045348, 1833273720522384358862
Offset: 2

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Because lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)) = 2.7977647035208... (see A363078) then a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

Examples

			a(2) = 3 because Sum_{k=2..3} 1/(k*log(log(k))) = 2.18008755... > 2 and Sum_{k=2..2} 1/(k*log(log(k))) = -1.364208386450... < 2.
a(7) = 389 because Sum_{k=2..389} 1/(k*log(log(k))) = 7.000345... > 7 and Sum_{k=2..388} 1/(k*log(log(k))) = 6.99890560988... < 7.
		

Crossrefs

Programs

  • Mathematica
    (*slow procedure*)
    lim = 2; sum = 0; aa = {}; Do[sum = sum + N[1/(k Log[Log[k]]), 100];
     If[sum >= lim, AppendTo[aa, k]; Print[{lim, sum, k}];
      lim = lim + 1], {k, 2, 269777}];aa
    (*quick procedure *)
    aa = {3}; cons = 2.79776470352080492766050456553352884330850083202326989577856315;
    Do[ww = w /. NSolve[LogIntegral[Log[w]] + cons == n, w];
     AppendTo[aa, Round[ww][[1]]], {n, 3, 21}]; aa

Formula

For n >= 3, a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

A363078 Decimal expansion of lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)).

Original entry on oeis.org

2, 7, 9, 7, 7, 6, 4, 7, 0, 3, 5, 2, 0, 8, 0, 4, 9, 2, 7, 6, 6, 0, 5, 0, 4, 5, 6, 5, 5, 3, 3, 5, 2, 8, 8, 4, 3, 3, 0, 8, 5, 0, 0, 8, 3, 2, 0, 2, 3, 2, 6, 9, 8, 9, 5, 7, 7, 8, 5, 6, 3, 1, 5, 0, 0, 5, 0, 6, 4, 3, 2, 8, 9, 3, 6, 2, 4, 5, 4, 5, 9, 4, 8, 3, 6, 8, 6, 8, 2, 5, 4, 8, 1, 8, 2, 9, 5, 4, 1, 9, 2, 5, 5, 0, 8
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.
For the smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n see A361089.

Examples

			2.7977647035208...
		

Crossrefs

Showing 1-10 of 11 results. Next