cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A303493 Decimal expansion of Sum_{p prime} log(p)/p^3.

Original entry on oeis.org

1, 5, 0, 7, 5, 7, 5, 5, 5, 5, 4, 3, 9, 5, 0, 4, 2, 2, 1, 7, 9, 8, 3, 6, 5, 1, 6, 3, 6, 5, 3, 4, 2, 9, 1, 9, 5, 7, 5, 5, 0, 1, 1, 6, 1, 5, 3, 0, 6, 8, 9, 3, 3, 1, 8, 1, 8, 7, 9, 7, 6, 7, 6, 0, 4, 2, 5, 5, 8, 4, 1, 8, 4, 2, 7, 0, 9, 7, 1, 7, 7, 6, 2, 2, 8, 8, 8, 8, 8, 0, 8, 4, 8, 3, 6, 3, 6, 5, 7, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 3.

Examples

			0.150757555543950422179836516365342919575501161530689331818797676...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[3], 10, 100][[1]]

A303499 Decimal expansion of Sum_{p prime} log(p)/p^9.

Original entry on oeis.org

0, 0, 1, 4, 1, 0, 4, 9, 1, 9, 2, 1, 4, 2, 4, 5, 3, 1, 2, 9, 1, 5, 5, 4, 1, 9, 6, 4, 5, 6, 3, 0, 8, 1, 9, 9, 9, 7, 7, 9, 0, 1, 6, 5, 7, 1, 3, 1, 6, 9, 3, 4, 9, 6, 1, 9, 2, 8, 3, 6, 5, 0, 0, 8, 2, 8, 7, 7, 9, 8, 3, 9, 8, 7, 8, 9, 0, 0, 7, 5, 5, 5, 7, 2, 9, 1, 3, 8, 4, 9, 9, 1, 7, 0, 6, 0, 0, 6, 6, 9, 6, 3, 8, 6, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 9.

Examples

			0.0014104919214245312915541964563081999779016571316934961928365008287798...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[9], 10, 103][[1]]
  • PARI
    suminf(n=1, p=prime(n); log(p)/p^9) \\ Michel Marcus, Apr 25 2018

A303494 Decimal expansion of Sum_{p prime} log(p)/p^4.

Original entry on oeis.org

0, 6, 0, 6, 0, 7, 6, 3, 3, 3, 5, 0, 7, 7, 0, 0, 6, 3, 3, 9, 2, 2, 3, 0, 9, 8, 3, 7, 0, 9, 7, 1, 3, 3, 7, 8, 4, 0, 6, 3, 8, 2, 8, 7, 7, 4, 6, 1, 2, 5, 9, 8, 4, 3, 9, 9, 1, 1, 2, 7, 6, 8, 1, 7, 3, 4, 1, 5, 2, 6, 7, 6, 7, 8, 4, 5, 3, 9, 9, 6, 7, 9, 2, 5, 9, 0, 8, 1, 3, 8, 1, 5, 4, 9, 8, 2, 5, 5, 5, 7, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 4.

Examples

			0.060607633350770063392230983709713378406382877461259843991127681734...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[4], 10, 100][[1]]

A303495 Decimal expansion of Sum_{p prime} log(p)/p^5.

Original entry on oeis.org

0, 2, 6, 8, 3, 8, 6, 0, 1, 2, 7, 6, 7, 9, 8, 3, 5, 7, 4, 2, 2, 1, 8, 7, 5, 1, 3, 2, 9, 2, 4, 5, 0, 1, 5, 9, 9, 4, 3, 3, 3, 0, 1, 4, 9, 5, 5, 3, 5, 5, 8, 2, 2, 8, 1, 2, 4, 8, 1, 9, 8, 0, 3, 6, 0, 0, 3, 3, 5, 1, 1, 5, 7, 2, 3, 9, 8, 6, 1, 4, 6, 5, 6, 6, 8, 6, 2, 2, 8, 3, 2, 2, 6, 3, 6, 3, 0, 4, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the prime zeta function at 5.

Examples

			0.0268386012767983574221875132924501599433301495535582281248198036...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[5], 10, 99][[1]]

A303496 Decimal expansion of Sum_{p prime} log(p)/p^6.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 0, 8, 0, 7, 2, 2, 7, 9, 9, 9, 9, 1, 5, 2, 7, 0, 2, 7, 7, 9, 2, 7, 7, 4, 6, 8, 9, 9, 7, 0, 0, 4, 0, 9, 1, 1, 3, 5, 0, 4, 7, 1, 5, 7, 5, 8, 7, 5, 8, 7, 4, 1, 0, 9, 3, 3, 4, 0, 3, 5, 1, 2, 3, 3, 9, 9, 7, 9, 5, 2, 0, 7, 0, 2, 5, 7, 1, 9, 4, 0, 6, 4, 0, 0, 8, 6, 1, 3, 1, 1, 1, 3, 9, 1, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the prime zeta function at 6.

Examples

			0.012459080722799991527027792774689970040911350471575875874109334035...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[6], 10, 100][[1]]

A303497 Decimal expansion of Sum_{p prime} log(p)/p^7.

Original entry on oeis.org

0, 0, 5, 9, 4, 0, 6, 8, 9, 0, 3, 9, 1, 4, 8, 1, 9, 6, 1, 4, 2, 5, 5, 0, 5, 9, 2, 8, 2, 9, 0, 1, 6, 6, 0, 9, 0, 1, 9, 3, 6, 8, 1, 8, 9, 5, 0, 5, 9, 2, 9, 3, 5, 1, 0, 7, 5, 1, 6, 6, 8, 1, 3, 1, 6, 9, 8, 8, 8, 9, 8, 3, 4, 6, 0, 2, 5, 7, 9, 7, 5, 8, 4, 2, 6, 9, 1, 2, 1, 8, 4, 0, 2, 0, 5, 3, 2, 5, 0, 8, 9, 2, 4, 1, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 7.

Examples

			0.00594068903914819614255059282901660901936818950592935107516681316988898...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[7], 10, 103][[1]]

A303498 Decimal expansion of Sum_{p prime} log(p)/p^8.

Original entry on oeis.org

0, 0, 2, 8, 7, 9, 5, 2, 4, 7, 0, 8, 7, 2, 9, 2, 4, 7, 3, 9, 1, 3, 4, 6, 0, 2, 8, 4, 2, 3, 8, 5, 7, 3, 3, 4, 0, 6, 4, 9, 9, 8, 9, 8, 3, 7, 6, 1, 6, 7, 5, 8, 6, 5, 8, 4, 1, 0, 6, 7, 6, 1, 8, 2, 8, 6, 1, 8, 5, 3, 2, 1, 4, 8, 1, 5, 4, 1, 8, 3, 9, 9, 5, 0, 4, 8, 1, 2, 7, 5, 6, 6, 2, 9, 6, 5, 0, 6, 8, 2, 7, 7, 4, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2018

Keywords

Comments

The negated first derivative of the Prime Zeta function at 8.

Examples

			0.00287952470872924739134602842385733406499898376167586584106761828618532...
		

Crossrefs

Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).

Programs

  • Mathematica
    RealDigits[PrimeZetaP'[8], 10, 103][[1]]
  • PARI
    suminf(n=1, p=prime(n); log(p)/p^8) \\ Michel Marcus, Apr 25 2018

A358789 Decimal expansion of Sum_{p prime, p>=3} (-1)^((p-1)/2)*log(p)/p, negated.

Original entry on oeis.org

5, 4, 5, 6, 8, 1, 2, 7, 2, 7, 9, 5, 1, 2, 7, 9, 0, 1, 4, 8, 9, 5, 3, 2, 3, 8, 3, 3, 8, 0, 0, 4, 0, 3, 8, 3, 4, 7, 5, 2, 5, 2, 8, 0, 5, 4, 1, 4, 2, 7, 4, 4, 6, 5, 4, 0, 7, 5, 9, 8, 6, 6, 3, 9, 2, 8, 8, 7, 3, 6, 5, 3, 1, 4, 8, 7, 2, 7, 2, 6, 4, 0, 9, 6, 2, 8, 7, 8, 6, 2, 1, 5, 1, 4, 1, 6, 1, 2, 3, 2, 3, 8, 8, 5, 7, 9, 2, 6, 6, 6, 6, 2, 1, 9, 0
Offset: 0

Views

Author

Artur Jasinski, Jan 03 2023

Keywords

Comments

Sum_{p prime} log(p)/p is divergent.

Examples

			-0.54568127279512790148953238338...
		

Crossrefs

Programs

  • Mathematica
    alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; beta[s_]:= (1 - 1/2^s) * Zeta[s] / DirichletBeta[s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * Limit[D[Log[alfa[(2*n + 1)*s]/beta[(2*n + 1)*s]], s], s -> 1], {n, 0, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jan 25 2023 *)

Formula

Limit_{N->oo} ((Sum_{p<=N prime == 3 (mod 4)} log(p)/p) - (Sum_{p<=N prime == 1 (mod 4)} log(p)/p)).

A360094 Decimal expansion of Sum_{p primes, p == 1 mod 4} log(p)/p^2.

Original entry on oeis.org

1, 0, 7, 3, 5, 9, 5, 4, 5, 2, 9, 7, 1, 1, 3, 0, 7, 7, 1, 3, 8, 4, 5, 0, 3, 8, 2, 0, 0, 9, 1, 2, 1, 9, 0, 1, 1, 6, 6, 3, 3, 9, 3, 9, 6, 9, 1, 2, 6, 3, 7, 7, 7, 9, 3, 7, 2, 6, 5, 9, 5, 8, 0, 7, 8, 0, 2, 7, 8, 7, 7, 0, 5, 8, 5, 0, 7, 3, 6, 8, 7, 8, 6, 3, 9, 9, 6, 4, 6, 6, 5, 0, 7, 6, 5, 7, 2, 0, 1, 0, 1, 9, 5, 1, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2023

Keywords

Examples

			0.107359545297113077138450382009121901166339396912637779372659580780278...
		

Crossrefs

Programs

  • Mathematica
    alfa[s_]:= 1/(1 + 1/2^s) * DirichletBeta[s] * Zeta[s] / Zeta[2*s]; Do[Print[N[-1/2*Sum[MoebiusMu[2*n + 1]/(2*n + 1) * D[Log[alfa[(2*n + 1)*s]], s] /. s->2, {n, 0, m}], 120]], {m, 10, 100, 10}]

Formula

Equals A136271 - A360095 - log(2)/4.
Showing 1-10 of 14 results. Next