cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A055462 Superduperfactorials: product of first n superfactorials.

Original entry on oeis.org

1, 1, 2, 24, 6912, 238878720, 5944066965504000, 745453331864786829312000000, 3769447945987085350501386572267520000000000, 6916686207999802072984424331678589933649915805696000000000000000
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Comments

Next term has 92 digits and is too large to display.
Starting with offset 1, a(n) is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000332. The sequence for m with alpha<=m<=L is then computed as Prod_{n=alpha..m}(Prod_{k=alpha..n}(Prod_{i=alpha..k}(i))). - Peter Luschny, Jul 14 2009

Examples

			a(4) = 1!2!3!4!*1!2!3!*1!2!*1! = 288*12*2*1 = 6912.
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[j^Binomial(n-j+2,2): j in [1..n]]): n in [0..10]]; // G. C. Greubel, Jan 31 2024
    
  • Maple
    seq(mul(mul(mul(i, i=alpha..k), k=alpha..n), n=alpha..m), m=alpha..10); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Product[BarnesG[j], {j, k + 1}], {k, 10}] (* Jan Mangaldan, Mar 21 2013 *)
    Table[Round[Exp[(n+2)*(n+3)*(2*n+5)/8] * Exp[PolyGamma[-3, n+3]] * BarnesG[n+3]^(n+3/2) / (Glaisher^(n+3) * (2*Pi)^((n+3)^2/4) * Gamma[n+3]^((n+2)^2/2))], {n, 0, 10}] (* Vaclav Kotesovec, Feb 20 2015 after Jan Mangaldan *)
    Nest[FoldList[Times,#]&,Range[0,15]!,2]  (* Harvey P. Dale, Jul 14 2023 *)
  • PARI
    a(n)=my(t=1);prod(k=2,n,t*=k!) \\ Charles R Greathouse IV, Jul 28 2011
    
  • SageMath
    [product(j^binomial(n-j+2,2) for j in range(1,n+1)) for n in range(11)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = a(n-1)*A000178(n) = Product_{i=1..n} (i!)^(n-i+1) = Product_{i=1..n} i^((n-i+1)*(n-i+2)/2).
log a(n) = (1/6) n^3 log n - (11/36) n^3 + O(n^2 log n). - Charles R Greathouse IV, Jan 13 2012
a(n) = exp((6 + 13 n + 9 n^2 + 2 n^3 - 8*(n + 2)*log(A)-2*(n + 2)^2*log(2*Pi) + 4*(2 n + 1)*logG(n + 2) - 4*(n + 1)^2*logGamma(n + 2) + 8*psi(-3, n + 2))/8) where A is the Glaisher-Kinkelin constant, logG(z) is the logarithm of the Barnes G function (A000178), and psi(-3, z) is a polygamma function of negative order (i.e., the second iterated integral of logGamma(z)). - Jan Mangaldan, Mar 21 2013
a(n) ~ exp(Zeta(3)/(8*Pi^2) - (2*n+3)*(11*n^2 + 24*n - 3)/72) * n^((2*n+3)*(2*n^2 + 6*n + 3)/24) * (2*Pi)^((n+1)*(n+2)/4) / A^(n+3/2), where A = A074962 = 1.28242712910062263687... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 20 2015

Extensions

a(9) from N. J. A. Sloane, Dec 15 2008

A168467 a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).

Original entry on oeis.org

1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
Offset: 0

Views

Author

Paul Barry, Nov 26 2009

Keywords

Comments

Hankel transform of A000698(n+1).
The sequence 1,1,6,720,... with general term Product_{k=0..n, ((2k+1)(2k+0^k))^(n-k)} is the Hankel transform of A112934. - Paul Barry, Dec 04 2009
a(n) is also the determinant of the n X n matrix M(i,j) = i^(2*j)*sinh(2*j*arccsch(i))/(2*sqrt(i^2+1)), with i and j from 1 to n, which is the same matrix generated by sequences of length n by the linear recurrences with kernel { 2*(k^2 + z), -k^4 }, and initial conditions { 1, 2*(k^2 + z) }, with k from 1 to n, and z = 2. Regardless of the value of z, for every n, the determinant of the n X n matrix of polynomials generated gives always a(n) as result. - Federico Provvedi, Feb 01 2021

Examples

			From _Federico Provvedi_, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3)  ),
  ( 1, 2*(z+4), 4*(z+6)*(z+2)      ),
  ( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
    Table[Product[((2k+2)(2k+3))^(n-k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Dec 26 2019 *)
    Table[Det@Table[LinearRecurrence[{2*k^2,-k^4},{1, 2*k^2},n], {k, 1, n}], {n,1,20}] (* Federico Provvedi, Feb 01 2021 *)
    Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&,{#,#}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
  • Python
    from math import prod
    def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1,n+1))*3**n<Chai Wah Wu, Nov 26 2023

Formula

G.f.: Q(0)/(2*x) -1/x, where Q(k) = 1 + 1/(1 -(2*k+1)!*x/((2*k+1)!*x + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = Product_{k=1..n} (2*k+1)!. - Vladimir Reshetnikov, Sep 06 2016
a(n) ~ A^(-1/2) * 2^(n^2 + 3*n + 53/24) * exp((-3/2)*n^2 + (-5/2)*n + 1/24) * n^(n^2 + (5/2)*n + 35/24) * Pi^((n+1)/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vladimir Reshetnikov, Sep 06 2016
a(n) = A000178(2*n + 1) / A098694(n). - Vaclav Kotesovec, Oct 28 2017
a(n) = A202768(n)*A000142(n). - Federico Provvedi, Feb 01 2021
For n > 0, a(n) = n * (2*n+1) * sqrt(BarnesG(2*n)) * Gamma(2*n)^2 / (sqrt(Gamma(n)) * 2^((n-3)/2)). - Vaclav Kotesovec, Nov 27 2024

A306651 a(n) = Product_{k=1..n} BarnesG(3*k).

Original entry on oeis.org

1, 288, 36118462464000, 240498631970530185123135341199360000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 03 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[3*k], {k, 1, n}], {n, 1, 6}]
    Round[Table[3^(15*n^2/4 - 7*n/12 - 1/4) * E^(Pi/(18*Sqrt[3]) - PolyGamma[1, 1/3]/(12*Sqrt[3]*Pi) - Zeta[3]/(3*Pi^2) + 1/6 + 3*n*(n + 1)*(2*n + 1)/8 + 3*PolyGamma[-3, n + 1] - (3/2)*Derivative[1, 0][Zeta][-2, n] + (1/6)*Derivative[1, 0][Zeta][-2, 3*n] + (7/2)*Derivative[1, 0][Zeta][-1, n + 1/3] + (5/2)*Derivative[1, 0][Zeta][-1, n + 2/3]) * BarnesG[3*n]^(n + 1) * BarnesG[n + 1/3] * Gamma[n]^(5*n/2 - 13/6) / (BarnesG[4/3] * BarnesG[n]^(5/2) * Gamma[n + 1/3]^(n - 1) * Gamma[3*n]^(3*n*(n + 1)/2 - 2/3) * Glaisher^(3*n + 5) * (2*Pi)^(3*(n + 1)^2/4) * n^(3*n^2/2)), {n, 1, 6}]] (* Vaclav Kotesovec, Mar 04 2019 *)

Formula

a(n) ~ (2*Pi)^(3*n^2/4 + n/4 + 1/6) * 3^(3*n^3/2 + 3*n^2/4 - n/3 - 13/72) * n^(3*n^3/2 + 3*n^2/4 - n/3 - 5/72) / (Gamma(1/3)^(1/3) * A^(n + 1/6) * exp(11*n^3/4 + 9*n^2/8 - 5*n/12 - Zeta(3)/(24*Pi^2) - 1/72)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = Product_{k=1..n} (exp(-8*Zeta'(-1)) * 3^(9*k^2/2 - 3*k + 5/12) * (2*Pi)^(1 - 3*k) * Gamma(k)^2 * Gamma(k + 1/3) * (BarnesG(k) * BarnesG(k + 1/3) * BarnesG(k + 2/3))^3).
a(n) = a(n-1)*A296608(n). - R. J. Mathar, Jul 24 2025

A296607 a(n) = BarnesG(2*n).

Original entry on oeis.org

0, 1, 2, 288, 24883200, 5056584744960000, 6658606584104736522240000000, 127313963299399416749559771247411200000000000, 69113789582492712943486800506462734562847413501952000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[BarnesG[2*n], {n, 0, 10}]
    Table[Glaisher^3 * E^(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG[n] * BarnesG[n + 1/2]^2 * BarnesG[n+1], {n, 0, 10}]

Formula

a(n) = A^3 * exp(-1/4) * 2^(2*n^2 - 3*n + 11/12) * Pi^(1/2 - n) * BarnesG(n) * BarnesG(n + 1/2)^2 * BarnesG(n+1), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ 2^(2*n^2 - n - 1/12) * exp(1/12 + 2*n - 3*n^2) * n^(2*n^2 - 2*n + 5/12) * Pi^(n - 1/2) / A, where A is the Glaisher-Kinkelin constant A074962.
a(n) = A000178(2*n-2), n>0. - R. J. Mathar, Jul 24 2025

A055746 Product of first n terms of A003046.

Original entry on oeis.org

1, 1, 2, 20, 2800, 16464000, 12778698240000, 4254956888736153600000, 2026001446509988558521630720000000, 4690285643617101997210180025102660272128000000000
Offset: 0

Views

Author

N. J. A. Sloane, Jul 11 2000

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(mul(binomial(2*j,j)/(j+1),j=0..k), k=0..n), n=0..9); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    Table[Product[Product[Binomial[2*j,j]/(j+1),{j,0,k}],{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Jul 10 2015 *)
    Table[Product[2^((k + 1)/2) * Sqrt[BarnesG[2*k]] * Gamma[2*k] / (BarnesG[k] * BarnesG[k + 3] * Gamma[k]^(3/2)), {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Mar 02 2019 *)

Formula

a(n) ~ c * 2^(n^3/3 + n^2 - n/8 - 71/48) * exp(9*n^2/8 + 5*n/2 - 7/24) * A^(3*n/2 + 4) / (n^(3*n^2/4 + 21*n/8 + 9/4) * Pi^(n^2/4 + 5*n/4 + 27/16)), where A = A074962 = 1.2824271291006226368753425688697917277... is the Glaisher-Kinkelin constant and c = 1.06988379617813356826829257647028132359737354153723273083785714620398... = A255674. - Vaclav Kotesovec, Jul 10 2015
a(n) ~ A^(3*n/2 + 3) * exp(9*n^2/8 + 5*n/2 - 7*Zeta(3)/(32*Pi^2) - 1/4) * 2^(n^3/3 + n^2 - n/8 - 65/48) / (Pi^(n^2/4 + 5*n/4 + 3/2) * n^(3*n^2/4 + 21*n/8 + 9/4)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 02 2019
a(n) = Product_{k=1..n} (2^((k+1)/2) * sqrt(BarnesG(2*k)) * Gamma(2*k) / (BarnesG(k) * BarnesG(k+3) * Gamma(k)^(3/2))). - Vaclav Kotesovec, Mar 02 2019

A255674 Decimal expansion of a constant related to the Barnes G-function.

Original entry on oeis.org

1, 0, 6, 9, 8, 8, 3, 7, 9, 6, 1, 7, 8, 1, 3, 3, 5, 6, 8, 2, 6, 8, 2, 9, 2, 5, 7, 6, 4, 7, 0, 2, 8, 1, 3, 2, 3, 5, 9, 7, 3, 7, 3, 5, 4, 1, 5, 3, 7, 2, 3, 2, 7, 3, 0, 8, 3, 7, 8, 5, 7, 1, 4, 6, 2, 0, 3, 9, 8, 6, 3, 0, 9, 0, 7, 2, 2, 3, 1, 3, 3, 7, 7, 2, 7, 0, 8, 5, 9, 8, 9, 9, 3, 0, 5, 9, 6, 8, 0, 3, 5, 7, 0, 5, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 10 2015

Keywords

Examples

			1.06988379617813356826829257647028132359737354153723273083785714620398...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) $MaxExtraPrecision = 1000; funs[n_]:=Product[BarnesG[j+1/2] / BarnesG[j], {j, 1, n}] / (Glaisher^(1/2) * n^(n^2/4 - n/8 - 1/24) * (2*Pi)^(n/4 - 3/16) / E^(n*(3*n-1)/8)); Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[200/m]]*(j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 120]], {m, 10, 150, 10}]
    RealDigits[2^(1/8) * Pi^(3/16) * E^(1/24 - 7*Zeta[3]/(32*Pi^2)) / Glaisher, 10, 120][[1]] (* Vaclav Kotesovec, Mar 02 2019 *)

Formula

Equals limit n->infinity (Product_{j = 1..n} BarnesG(j + 1/2) / BarnesG(j)) / (A^(1/2) * n^(n^2/4 - n/8 - 1/24) * (2*Pi)^(n/4 - 3/16) / exp(n*(3*n-1)/8)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant.
Equals limit n->infinity A055746(n) / (2^(n^3/3 + n^2 - n/8 - 71/48) * exp(9*n^2/8 + 5*n/2 - 7/24) * A^(3*n/2 + 4) / (n^(3*n^2/4 + 21*n/8 + 9/4) * Pi^(n^2/4 + 5*n/4 + 27/16))).
From Vaclav Kotesovec, Mar 02 2019: (Start)
Equals 2^(1/8) * Pi^(3/16) * exp(1/24 - 7*Zeta(3)/(32*Pi^2)) / A, where A is the Glaisher-Kinkelin constant A074962.
Equals exp(-1/24 - 7*Zeta(3)/(32*Pi^2) + Zeta'(-1) + log(2)/8 + 3*log(Pi)/16).
(End)

A324992 Decimal expansion of zeta'(-1, 1/2).

Original entry on oeis.org

0, 5, 3, 8, 2, 9, 4, 3, 9, 3, 2, 6, 8, 9, 4, 4, 1, 0, 0, 4, 7, 9, 0, 8, 4, 9, 1, 7, 2, 7, 2, 9, 9, 6, 3, 1, 0, 4, 5, 5, 3, 9, 0, 1, 7, 9, 0, 2, 5, 9, 0, 2, 5, 6, 2, 4, 4, 8, 9, 9, 4, 8, 6, 1, 1, 6, 4, 5, 5, 1, 1, 5, 5, 8, 4, 5, 5, 1, 3, 0, 6, 5, 6, 2, 8, 5, 1, 5, 7, 8, 2, 0, 8, 0, 7, 0, 2, 6, 5, 7, 8, 8, 2, 7, 1, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.053829439326894410047908491727299631045539017902590256244899486116455...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/2), 120);
    evalf(-log(2)/24 - Zeta(1,-1)/2, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/2], 10, 120][[1]]
    N[With[{k=1}, -BernoulliB[2*k] * Log[2] / 4^k / k - (2^(2*k - 1) - 1) * Zeta'[1 - 2*k] / 2^(2*k - 1)], 120]
  • PARI
    zetahurwitz'(-1, 1/2) \\ Michel Marcus, Mar 24 2019

Formula

Equals -log(2)/24 - Zeta'(-1)/2 = A261829 - log(2)/24.
Equals -1/24 - log(2)/24 + log(A)/2, where A is the Glaisher-Kinkelin constant A074962.
Equals (log(Pi) - 1 + gamma)/24 - Zeta'(2)/(4*Pi^2), where gamma is the Euler-Mascheroni constant A001620.

A365266 a(n) = Product_{k=1..n} Gamma(6*k).

Original entry on oeis.org

1, 120, 4790016000, 1703748471578689536000000, 44045334006101976766560297729172439040000000000, 389438360216723307909581902233109465138002465491175688781168640000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Gamma[6*k], {k, 1, n}], {n, 0, 10}]
    Table[Product[(6*k-1)!, {k, 1, n}], {n, 0, 10}]

Formula

a(n) = A^(35/6) * exp(-35/72) * Gamma(1/3)^(5/3) * 2^(-125/72 + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * Pi^(-25/12 - 5*n/2) * BarnesG(1 + n) * BarnesG(7/6 + n) * BarnesG(4/3 + n) * BarnesG(3/2 + n) * BarnesG(5/3 + n) * BarnesG(11/6 + n), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(-1/6) * Gamma(1/3)^(5/3) * 2^(-35/72 + 3*n + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * exp(1/72 - 5*n/2 - 9*n^2/2) * n^(19/72 + 5*n/2 + 3*n^2) * Pi^(-5/6 + n/2), where A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-8 of 8 results.