cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A193430 Primes p such that p+1 is in A055462.

Original entry on oeis.org

23, 6911, 5944066965503999
Offset: 1

Views

Author

Kausthub Gudipati, Jul 28 2011

Keywords

Comments

Prime numbers that are one less than the product of first n superfactorials.
The next term, if it exists, has more than 75,000 digits.
Subsequence of A238265.

Examples

			23 is a term because 23 = 1! * (1! * 2!) * (1! * 2! * 3!) - 1.
		

Crossrefs

Programs

  • PARI
    t=1;k=1;for(n=2,100,t*=n!;k*=t;if(ispseudoprime(k-1),print1(k-1", "))) \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) are the prime values of 1! * (1! * 2!) * (1! * 2! * 3!) * (1! * 2! * 3! * ... * n!) - 1

A238265 Primes p such that p + 1 or p - 1 is in A055462.

Original entry on oeis.org

2, 3, 23, 6911, 238878721, 5944066965503999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 21 2014

Keywords

Comments

Primes which are within 1 of a superduperfactorial number.
Supersequence of A193430.

Examples

			A000142(2)^3*A000142(3)^2*A000142(4) - 1 = 6911, which is prime.
		

Crossrefs

Programs

  • PARI
    t=1; p=1; for(n=1, 6, t*=n!; p*=t; if(isprime(p-1), print1(p-1, ", ")); if(isprime(p+1), print1(p+1, ", ")));

Formula

a(n) are the prime values of 1! * (1! * 2!) * (1! * 2! * 3!) * (1! * 2! * 3! * n!) +/- 1.

A000178 Superfactorials: product of first n factorials.

Original entry on oeis.org

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - Amarnath Murthy, Jan 02 2002
Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - Benoit Cloitre, May 19 2002
Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - Benoit Cloitre, May 19 2002
a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - Philippe Deléham, Mar 07 2004
Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - T. D. Noe, Aug 21 2004
Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - T. D. Noe, Dec 04 2004
The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - Peter Luschny, Jul 14 2009
For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - Enrique Pérez Herrero, Jun 21 2010
a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - Emeric Deutsch, Sep 21 2011
a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - Wolfdieter Lang, Aug 27 2013
a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - Chad Brewbaker, Nov 03 2013
The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - Charles R Greathouse IV, Aug 15 2014
a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - Stoyan Apostolov, Aug 26 2014
All terms are in A064807 and all terms after a(2) are in A005101. - Ivan N. Ianakiev, Sep 02 2016
Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - John M. Campbell, Dec 13 2016
Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - John M. Campbell, Dec 27 2016
Also the automorphism group order of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - Michael Somos, Mar 11 2020
Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - Bernard Schott, Nov 29 2021

Examples

			a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
    
  • Maple
    A000178 := proc(n)
        mul(i!,i=1..n) ;
    end proc:
    seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
  • Mathematica
    a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
    Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
    FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
    RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
    BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
  • Maxima
    A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
    
  • PARI
    A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • PARI
    for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
    
  • Python
    A000178_list, n, m = [1], 1,1
    for i in range(1,100):
        m *= i
        n *= m
        A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
    
  • Python
    from math import prod
    def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def comm_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            i.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
        puts comm_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - Amiram Eldar, Nov 19 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)

A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).

Original entry on oeis.org

1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the second Bendersky constant.
This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016

Examples

			1.03091675219739211419331309646694229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First
    RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015

A255269 a(n) = Product_{k=1..n} k!^k.

Original entry on oeis.org

1, 4, 864, 286654464, 7132880358604800000, 993710590042385551668019200000000000, 82086865668400428790437436119503664712777728000000000000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!^k,{k,1,n}],{n,1,10}]
    FoldList[Times,Table[(k!)^k,{k,10}]] (* Harvey P. Dale, Aug 16 2021 *)

Formula

a(n) = A255268(n) / A055462(n-1).
a(n) ~ sqrt(A) * exp((3 - 45*n^2 - 32*n^3 - 9*Zeta(3)/Pi^2)/72) * n^((8*n^3 + 18*n^2 + 10*n + 1)/24) * (2*Pi)^(n*(n+1)/4), where A = A074962 = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.2020569031595942853997... .

A127324 Fourth 4-dimensional hyper-tetrahedral coordinate; 4-D analog of A056558.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Alternatively, write n = C(i,4)+C(j,3)+C(k,2)+C(l,1) with i>j>k>l>=0; sequence gives k values. Each n >= 0 has a unique representation as n = C(i,4)+C(j,3)+C(k,2)+C(l.1) with i>j>k>l>=0. This is the combinatorial number system of degree t = 4, where we get [A194882, A194883, A194884, A127324].
If {(W,X,Y,Z)} are 4-tuples of nonnegative integers with W>=X>=Y>=Z ordered by W, X, Y and Z, then W=A127321(n), X=A127322(n), Y=A127323(n) and Z=A127324(n). These sequences are the four-dimensional analogs of the three-dimensional A056556, A056557 and A056558.
This is a 'Matryoshka doll' sequence with alpha=0 (cf. A055462 and A000332), seq(seq(seq(seq(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..4). - Peter Luschny, Jul 14 2009

Examples

			See A127321 for a table of A127321, A127322, A127323, A127324
See A127327 for a table of A127324, A127325, A127326, A127327
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a127324 n = a127324_list !! n
    a127324_list = concatMap (concatMap concat .
                   inits . inits . enumFromTo 0) $ enumFrom 0
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    seq(seq(seq(seq(i,i=0..k),k=0..n),n=0..m),m=0..5); # Peter Luschny, Sep 22 2011
  • Mathematica
    Table[i, {m, 0, 5}, {k, 0, m}, {j, 0, k}, {i, 0, j}] // Flatten  (* Robert G. Wilson v, Sep 27 2011 *)

Formula

For W>=X>=Y>=Z>=0, a(A000332(W+3)+A000292(X)+A000217(Y)+Z) = Z A127322(n+1) = A127321(n)==A127324(n) ? 0 : A127322(n)==A127324(n) ? 0 : A127323(n)==A127324(n) ? 0 : A127324(n)+1

A066120 Superduperprimorials: product of first n terms in Chernoff sequence.

Original entry on oeis.org

1, 2, 24, 8640, 653184000, 114069441024000000, 598216546007097937920000000000, 1601591599167888308924824752807936000000000000000
Offset: 0

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Comments

First number with n distinct positive triangular exponents in its prime factorization. Subsequence of A025487. - Matthew Vandermast, Nov 05 2009; edited May 23 2012

Examples

			a(4) = 2*(2*(2*3))*(2*(2*3)*(2*3*5)) = 2*(2*6)*(2*6*30) = 2*12*360 = 8640.
		

Crossrefs

Programs

  • PARI
    a(n) = { my(p=primes(n)); prod(i=1, #p, p[i]^((n - i + 1)*(n - i + 2)/2)) } \\ Harry J. Smith, Feb 01 2010

Formula

a(n) = Product_{i=1..n} prime(i)^((n-i+1)*(n-i+2)/2) = a(n-1)*A006939(n) = A066119(n-3, 4).

A163085 Product of first n swinging factorials (A056040).

Original entry on oeis.org

1, 1, 2, 12, 72, 2160, 43200, 6048000, 423360000, 266716800000, 67212633600000, 186313420339200000, 172153600393420800000, 2067909047925770649600000, 7097063852481244869427200000
Offset: 0

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

With the definition of the Hankel transform as given by Luschny (see link) which uniquely determines the original sequence (provided that all determinants are not zero) this is also 1/ the Hankel determinant of 1/(n+1) (assuming (0,0)-based matrices).
a(2*n-1) is 1/determinant of the Hilbert matrix H(n) (A005249).
a(2*n) = A067689(n). - Peter Luschny, Sep 18 2012

Crossrefs

Programs

  • Maple
    a := proc(n) local i; mul(A056040(i),i=0..n) end;
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    def A056040(n):
        swing = lambda n: factorial(n)/factorial(n//2)^2
        return mul(swing(i) for i in (0..n))
    [A056040(i) for i in (0..14)] # Peter Luschny, Sep 18 2012

A255268 a(n) = Product_{k=1..n} k!^n.

Original entry on oeis.org

1, 4, 1728, 6879707136, 49302469038676377600000, 237376313799769806328950291431424000000000000, 487929826521303413461947888047619993419888153407795494912000000000000000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!,{k,1,n}]^n,{n,1,10}]
    Table[BarnesG[n+2]^n, {n, 1, 10}]

Formula

a(n) = A000178(n)^n.
a(n) ~ exp(1/12 + n/12 - n^2 - 3*n^3/4) * n^(5*n/12 + n^2 + n^3/2) * 2^(n/2 + n^2/2) * Pi^(n/2 + n^2/2) / A^n, where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962).

A306635 a(n) = Product_{k=1..n} BarnesG(2*k).

Original entry on oeis.org

1, 2, 576, 14332723200, 72474629486854275072000000, 482580045081719158086051946616717605601280000000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[2*k], {k, 1, n}], {n, 1, 8}]
    Round[Table[2^(2*n^3/3 + n^2 - 5*n/3 - 2/3) * E^(n^3/2 + 3*n^2/4 + n/4 + 1/12 - 3*Zeta[3]/(16*Pi^2) + 2*PolyGamma[-3, n + 1] + Derivative[1, 0][Zeta][-2, n + 1/2] + 2*Derivative[1, 0][Zeta][-1, n + 1/2]) * Gamma[n]^(2*n - 7/4) * BarnesG[2*n]^(n + 1) / (Glaisher^(2*n + 3) * Pi^(n^2/2 + n + 1/2) * n^(n^2) * Gamma[2*n]^(n^2 + n - 3/4) * BarnesG[n]^2), {n, 1, 8}]] (* Vaclav Kotesovec, Mar 04 2019 *)

Formula

a(n) ~ c * 2^(2*n^3/3 + n^2/2 - n/4 - 3/8) * n^(2*n^3/3 - n/4) * Pi^(n^2/2 - 3/8) / (A^(n-2) * exp(11*n^3/9 - n/3 - Zeta(3)/(2*Pi^2) + 1/12)), where c = A255674^2 = 1.1446513373245340524595435844492841792576337833610236993... and A is the Glaisher-Kinkelin constant A074962.
a(n) ~ 2^(2*n^3/3 + n^2/2 - n/4 - 1/8) * n^(2*n^3/3 - n/4) * Pi^(n^2/2) / (A^n * exp(11*n^3/9 - n/3 - Zeta(3)/(16*Pi^2))), where A is the Glaisher-Kinkelin constant A074962.
a(n) = a(n-1)*A296607(n). - R. J. Mathar, Jul 24 2025
Showing 1-10 of 24 results. Next