cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A037896 Primes of the form k^4 + 1.

Original entry on oeis.org

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001, 723394817, 916636177, 1049760001, 1416468497
Offset: 1

Views

Author

Donald S. McDonald, Feb 27 2000

Keywords

Comments

From Bernard Schott, Apr 22 2019: (Start)
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is a perfect biquadrate: A307690, so this sequence is a subsequence of A078164 and A307690.
If p prime = k^4 + 1, phi(p) = k^4.
The last three Fermat primes in A019434 {17, 257, 65537} belong to this sequence; with F_k = 2^(2^k) + 1 and for k = 2, 3, 4, phi(F_k) = (2^(2^(k-2)))^4. (End)

Examples

			6^4 + 1 = 1297 is prime.
		

Crossrefs

Programs

  • Magma
    [n^4+1: n in [1..200] | IsPrime(n^4+1)]; // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    Select[Range[200]^4+1,PrimeQ] (* Harvey P. Dale, Jul 20 2015 *)
  • PARI
    j=[]; for(n=1,200, if(isprime(n^4+1),j=concat(j,n^4+1))); j
    
  • PARI
    list(lim)=my(v=List([2]),p); forstep(k=2,sqrtnint(lim\1-1,4),2, if(isprime(p=k^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    
  • Sage
    [n^4+1 for n in (1..200) if is_prime(n^4+1)] # G. C. Greubel, Apr 28 2019

Formula

a(n) = A002523(A000068(n)). - Elmo R. Oliveira, Feb 21 2025

Extensions

Corrected and extended by Jason Earls, Jul 19 2001

A013776 a(n) = 2^(4*n+1).

Original entry on oeis.org

2, 32, 512, 8192, 131072, 2097152, 33554432, 536870912, 8589934592, 137438953472, 2199023255552, 35184372088832, 562949953421312, 9007199254740992, 144115188075855872, 2305843009213693952
Offset: 0

Views

Author

Keywords

Comments

a(n) ~ -Pi*E(2*n)/B(2*n), E(n) Euler number, B(n) Bernoulli number. - Peter Luschny, Oct 28 2012
Equivalently, powers of 2 with final digit 2. - Muniru A Asiru, Mar 15 2019
As phi(a(n)) = (2^n)^4 is a perfect biquadrate (where phi is the Euler totient A000010), this is a subsequence of A078164 and A307690. - Bernard Schott, Mar 28 2022

Examples

			G.f. = 2 + 32*x + 512*x^2 + 8192*x^3 + 131072*x^4 + 2097152*x^5 + ...
		

Crossrefs

Subsequence of A307690.
Intersection of A000079 and A078164.

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 16*a(n-1), n > 0, a(0) = 2.
G.f.: 2/(1 - 16*x). (End)
From Peter Bala, Nov 29 2015: (Start)
a(n) = Sum_{k = 0..n} binomial(2*k,k)*binomial(4*n + 2 - 2*k, 2*n + 1 - k).
Bisection of A264960. (End)
a(n) = A000079(A016813(n)). - Michel Marcus, Nov 30 2015
a(n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A004171(2*n). - Peter Bala, Nov 25 2016
E.g.f.: 2*exp(16*x). - G. C. Greubel, Jun 30 2019
From Bernard Schott, Apr 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 8/15.
Sum_{n>=0} (-1)^n/a(n) = 8/17. (End)

Extensions

Wrong comment deleted by Kevin Ryde, Apr 16 2022

A013806 a(n) = 17^(4*n+1).

Original entry on oeis.org

17, 1419857, 118587876497, 9904578032905937, 827240261886336764177, 69091933913008732880827217, 5770627412348402378939569991057, 481968572106750915091411825223071697, 40254497110927943179349807054456171205137
Offset: 0

Views

Author

Keywords

Comments

As phi(a(n)) = (2*17^n)^4 is a perfect biquadrate (where phi is the Euler totient A000010), this is a subsequence of A078164 and A307690. - Bernard Schott, Mar 29 2022

Crossrefs

Intersection of A001026 and A078164.

Programs

  • Magma
    [17^(4*n+1): n in [0..15]]; // Vincenzo Librandi, Jul 06 2011
  • Mathematica
    17^(4Range[0,10]+1) (* or *) NestList[83521#&,17,20] (* Harvey P. Dale, May 21 2013 *)

Formula

a(0)=17, a(n)=83521*a(n-1). - Harvey P. Dale, May 21 2013
Sum_{n>=0} 1/a(n) = 4913/83520. - Bernard Schott, Mar 29 2022
Sum_{n>=0} (-1)^n/a(n) = 4913/83522. - Bernard Schott, Apr 08 2022
Showing 1-3 of 3 results.