cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A004171 a(n) = 2^(2n+1).

Original entry on oeis.org

2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832, 140737488355328, 562949953421312
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(2, 8), L(2, 8), P(2, 8), T(2, 8). See A008776 for definitions of Pisot sequences.
In the Chebyshev polynomial of degree 2n, a(n) is the coefficient of x^2n. - Benoit Cloitre, Mar 13 2002
1/2 - 1/8 + 1/32 - 1/128 + ... = 2/5. - Gary W. Adamson, Mar 03 2009
From Adi Dani, May 15 2011: (Start)
Number of ways of placing an even number of indistinguishable objects in n + 1 distinguishable boxes with at most 3 objects in box.
Number of compositions of even natural numbers into n + 1 parts less than or equal to 3 (0 is counted as part). (End)
Also the number of maximal cliques in the (n+1)-Sierpinski tetrahedron graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Assuming the Collatz conjecture is true, any starting number eventually leads to a power of 2. A number in this sequence can never be the first power of 2 in a Collatz sequence except of course for the Collatz sequence starting with that number. For example, except for 8, 4, 2, 1, any Collatz sequence that includes 8 must also include 16 (e.g., 5, 16, 8, 4, 2, 1). - Alonso del Arte, Oct 01 2019
First differences of A020988, and thus the "wavelengths" of the local maxima in A020986. See the Brillhart and Morton link, pp. 855-856. - John Keith, Mar 04 2021

Examples

			G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ...
From _Adi Dani_, May 15 2011: (Start)
a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are:
  for 0: (0, 0)
  for 2: (0, 2), (2, 0), (1, 1)
  for 4: (1, 3), (3, 1), (2, 2)
  for 6: (3, 3).
a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are:
  for 0: (0, 0, 0)
  for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0)
  for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)
  for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2)
  for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2).
(End)
		

References

  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.

Crossrefs

Absolute value of A009117. Essentially the same as A081294.
Cf. A132020, A164632. Equals A000980(n) + 2*A181765(n). Cf. A013776.

Programs

Formula

a(n) = 2*4^n.
a(n) = 4*a(n-1).
1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - Gary W. Adamson, Jun 16 2003
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 2*A000302(n).
G.f.: 2/(1-4*x). (End)
a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - Jaroslav Krizek, Jul 27 2009
E.g.f.: 2*exp(4*x). - Ilya Gutkovskiy, Nov 01 2016
a(n) = A002063(n)/3 - A000302(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - Peter Bala, Nov 25 2016
Product_{n>=0} (1 - 1/a(n)) = A132020. - Amiram Eldar, May 08 2023

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023

A144864 a(n) = (4*16^(n-1)-1)/3.

Original entry on oeis.org

1, 21, 341, 5461, 87381, 1398101, 22369621, 357913941, 5726623061, 91625968981, 1466015503701, 23456248059221, 375299968947541, 6004799503160661, 96076792050570581, 1537228672809129301, 24595658764946068821, 393530540239137101141, 6296488643826193618261, 100743818301219097892181
Offset: 1

Views

Author

Artur Jasinski, Sep 23 2008

Keywords

Comments

Old name was: A144863, read as binary numbers, converted to base 10.
All numbers in this sequence for n>1 are congruent to 5 mod 16. - Artur Jasinski, Sep 25 2008
From Omar E. Pol, Sep 10 2011: (Start)
It appears that this is a bisection of A002450.
It appears that this is a bisection of A084241.
It appears that this is a bisection of A153497.
It appears that this is a bisection of A088556, if n>=2.
(End)
All of the above is trivially true. - Joerg Arndt, Aug 19 2014
The aerated sequence (b(n))n>=1 = [1, 0, 21, 0, 341, 0, 5461, 0, 87381, ...] is a fourth-order linear divisibility sequence; that is, a(n) divides a(m) whenever n divides m. It is the case P1 = 0, P2 = -9, Q = -4 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Aug 26 2022

Crossrefs

Third quadrisection of Jacobsthal numbers A001045; the other quadrisections are A195156 (first), A139792 (second), and A141060 (fourth).

Programs

  • Magma
    [16^n/12-1/3: n in [1..20]]; // Vincenzo Librandi, Aug 03 2011
    
  • Mathematica
    Table[1/3 (-1 + 16^(n - 1)) + 16^(n - 1), {n, 1, 17}] (* Artur Jasinski, Sep 25 2008 *)
    LinearRecurrence[{17,-16},{1,21},20] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    vector(66,n,(4*16^(n-1)-1)/3) \\ Joerg Arndt, Aug 19 2014

Formula

a(n) = 16^n/12 - 1/3; a(n) = 16*a(n-1) + 5, a(1)=1. - Artur Jasinski, Sep 25 2008
G.f.: x*(1+4*x) / ( (16*x-1)*(x-1) ). - R. J. Mathar, Jan 06 2011
a(n)=b such that Integral_{x=-Pi/2..Pi/2} (-1)^(n+1)*2^(2*n-3)*(cos((2*n-1)*x))/(5/4+sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n) = (2^(4*n-2)-1)/3. - Klaus Purath, Jan 31 2021
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n-2).
a(n+1) - a(n) = 10*A013776(n-1) = 20*A001025(n-1) for n >= 1.
a(n) = 10*A098704(n) + 1 = 20*A131865(n-2) + 1 for n >= 2. (End)
E.g.f.: (exp(16*x) - 4*exp(x) + 3)/12. - Stefano Spezia, Apr 18 2024

Extensions

New name from Joerg Arndt, Aug 19 2014

A141060 Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5.

Original entry on oeis.org

3, 43, 683, 10923, 174763, 2796203, 44739243, 715827883, 11453246123, 183251937963, 2932031007403, 46912496118443, 750599937895083, 12009599006321323, 192153584101141163, 3074457345618258603, 49191317529892137643
Offset: 0

Views

Author

Paul Curtz, Jul 30 2008

Keywords

Comments

Jacobsthal numbers ending with the decimal digit 3. - Jianing Song, Aug 30 2022

Crossrefs

The other quadrisections of A001045 are A195156 (first), A139792 (second), and A144864 (third).

Programs

Formula

a(n) = A139792(n) + A013776(n).
a(n+1) - a(n) = 10*A013709(n) = 40*A001025(n).
G.f.: (3-8*x)/((1-x)*(1-16*x)). [Colin Barker, Apr 05 2012]
a(0)=3, a(1)=43, a(n)=17*a(n-1)-16*a(n-2). - Harvey P. Dale, Mar 16 2015
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n+3).
a(n) = 10*A141032(n) + 3 = 20*A098704(n+1) + 1 = 40*A131865(n-1) + 1 for n >= 1. (End)

A264960 Half-convolution of the central binomial coefficients A000984 with itself.

Original entry on oeis.org

1, 2, 10, 32, 146, 512, 2248, 8192, 35218, 131072, 556040, 2097152, 8815496, 33554432, 140107040, 536870912, 2230302098, 8589934592, 35541690568, 137438953472, 566823203656, 2199023255552, 9044910175520, 35184372088832, 144393718191496
Offset: 0

Views

Author

Peter Bala, Nov 29 2015

Keywords

Comments

The half-convolution of a sequence {s(n)}n>=0 with itself is defined by r(n) := Sum_{k = 0..floor(n/2)} s(k)*s(n-k). See A201204.

Crossrefs

Programs

  • GAP
    List([0..24],n->Sum([0..Int(n/2)],k->Binomial(2*k,k)*Binomial(2*n-2*k,n-k))); # Muniru A Asiru, Nov 25 2018
    
  • Magma
    [(&+[Binomial(2*k,k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    A264960:= n-> add(binomial(2*k,k)*binomial(2*n - 2*k, n - k),k = 0..floor(n/2)):
    seq(A264960(n),n = 0..24);
  • Mathematica
    a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = sum(k = 0, n\2, binomial(2*k,k)*binomial(2*n - 2*k, n - k)); \\ Michel Marcus, Nov 30 2015
    
  • Sage
    [sum(binomial(2*k,k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k).
a(2*n + 1) = 2^(4*n + 1) = A013776(n).
a(2*n) = (1/2)*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n).
O.g.f.: (1/2)*( 2/Pi*EllipticK(4*x) + 1/(1 - 4*x) ).
E.g.f.: (1/2)*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ).
D-finite with recurrence: - (2*n-3)*n^2*a(n) + 4*(2*n-1)*(n-1)^2*a(n-1) + 16*(2*n-3)*(n-1)^2*a(n-2) - 64*(2*n-1)*(n-2)^2*a(n-3) = 0. - Georg Fischer, Nov 25 2022

A307690 Integers with only one prime factor and whose Euler's totient is a perfect biquadrate.

Original entry on oeis.org

2, 17, 32, 257, 512, 1297, 8192, 65537, 131072, 160001, 331777, 614657, 1336337, 1419857, 2097152, 4477457, 5308417, 8503057, 9834497, 29986577, 33554432, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 536870912, 562448657, 655360001
Offset: 1

Views

Author

Bernard Schott, Apr 22 2019

Keywords

Comments

An integer q is a term iff q = p^(4*m+1), when p is prime of the form k^4 + 1 and m >= 0, then phi(q) = (k * (k^4+1)^m)^4. The primitive terms of this sequence are the primes of the form p = k^4 + 1, which are exactly in A037896.

Examples

			a(14) = 1419857 = 17^5 and phi(1419857) = 34^4.
		

Crossrefs

Subsequences: A013776 (2^(4*m+1)), A013806 (17^(4*m+1)), A037896 (primes of the form k^4 + 1).
Intersection of A078164 and A246655.
Cf. A054755 (idem with Euler's totient is square).

Programs

  • Magma
    [n:n in [1..10000000]| #PrimeDivisors(n) eq 1 and IsPower(EulerPhi(n),4)]; // Marius A. Burtea, May 09 2019
  • PARI
    isok(n) = isprimepower(n) && ispower(eulerphi(n), 4); \\ Michel Marcus, Apr 23 2019
    

A013792 a(n) = 10^(4*n + 1).

Original entry on oeis.org

10, 100000, 1000000000, 10000000000000, 100000000000000000, 1000000000000000000000, 10000000000000000000000000, 100000000000000000000000000000, 1000000000000000000000000000000000, 10000000000000000000000000000000000000, 100000000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A011557.

Programs

Formula

a(n) = 10000*a(n-1). - Wesley Ivan Hurt, Apr 19 2023
From Elmo R. Oliveira, Aug 30 2024: (Start)
G.f.: 10/(1 - 10000*x).
E.g.f.: 10*exp(10000*x).
a(n) = A011557(A016813(n)) = A098608(n)*A013715(n) = A013776(n)*A013782(n). (End)

A013806 a(n) = 17^(4*n+1).

Original entry on oeis.org

17, 1419857, 118587876497, 9904578032905937, 827240261886336764177, 69091933913008732880827217, 5770627412348402378939569991057, 481968572106750915091411825223071697, 40254497110927943179349807054456171205137
Offset: 0

Views

Author

Keywords

Comments

As phi(a(n)) = (2*17^n)^4 is a perfect biquadrate (where phi is the Euler totient A000010), this is a subsequence of A078164 and A307690. - Bernard Schott, Mar 29 2022

Crossrefs

Intersection of A001026 and A078164.

Programs

  • Magma
    [17^(4*n+1): n in [0..15]]; // Vincenzo Librandi, Jul 06 2011
  • Mathematica
    17^(4Range[0,10]+1) (* or *) NestList[83521#&,17,20] (* Harvey P. Dale, May 21 2013 *)

Formula

a(0)=17, a(n)=83521*a(n-1). - Harvey P. Dale, May 21 2013
Sum_{n>=0} 1/a(n) = 4913/83520. - Bernard Schott, Mar 29 2022
Sum_{n>=0} (-1)^n/a(n) = 4913/83522. - Bernard Schott, Apr 08 2022

A241888 a(n) = 2^(4*n + 1) - 1.

Original entry on oeis.org

1, 31, 511, 8191, 131071, 2097151, 33554431, 536870911, 8589934591, 137438953471, 2199023255551, 35184372088831, 562949953421311, 9007199254740991, 144115188075855871, 2305843009213693951, 36893488147419103231, 590295810358705651711, 9444732965739290427391
Offset: 0

Views

Author

Wassan Letourneur, Aug 09 2014

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->2^(4*n+1)-1); # Muniru A Asiru, Mar 12 2019
  • Maple
    seq(coeff(series((14*x+1)/((x-1)*(16*x-1)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Mar 12 2019
  • Mathematica
    Table[2^(4n + 1) - 1, {n, 0, 29}]
    CoefficientList[ Series[(14x + 1)/((x - 1) (16x - 1)), {x, 0, 18}], x] (* Robert G. Wilson v, Jan 28 2015 *)
    LinearRecurrence[{17,-16},{1,31},30] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    vector(40, n, 2^(4*n-3)-1) \\ Derek Orr, Aug 11 2014
    
  • PARI
    Vec((14*x+1)/((x-1)*(16*x-1)) + O(x^100)) \\ Colin Barker, Aug 31 2014
    

Formula

a(n) = 2^(4*n + 1) - 1 = A000225(4*n + 1) = A013776(n) - 1 = 4*A000225(4*n - 1) + 3.
From Colin Barker, Aug 31 2014: (Start)
a(n) = 17*a(n-1) - 16*a(n-2).
G.f.: (14*x+1)/((x-1)*(16*x-1)). (End)
E.g.f.: exp(x)*(2*exp(15*x) - 1). - Elmo R. Oliveira, Feb 20 2025

A013812 a(n) = 20^(4*n + 1).

Original entry on oeis.org

20, 3200000, 512000000000, 81920000000000000, 13107200000000000000000, 2097152000000000000000000000, 335544320000000000000000000000000, 53687091200000000000000000000000000000, 8589934592000000000000000000000000000000000, 1374389534720000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009964.

Programs

Formula

a(n) = 160000*a(n-1). - Harvey P. Dale, Dec 30 2012
From Elmo R. Oliveira, Jul 13 2025: (Start)
G.f.: 20/(1-160000*x).
E.g.f.: 20*exp(160000*x).
a(n) = A013776(n)*A013792(n) = A009964(A016813(n)). (End)
Showing 1-10 of 11 results. Next