cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A324773 Partial sums of A309151.

Original entry on oeis.org

1, 3, 6, 11, 15, 21, 28, 36, 45, 55, 66, 78, 92, 114, 134, 157, 181, 211, 224, 239, 255, 273, 313, 332, 349, 374, 395, 426, 453, 479, 507, 536, 568, 602, 641, 674, 709, 745, 786, 829, 866, 904, 951, 993, 1037, 1082, 1128, 1176, 1225, 1278, 1328, 1382, 1434
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2019

Keywords

Comments

At present just the first 84 terms of A309151 have been proved to be correct. So only 84 terms here are known to be correct (and therefore there cannot yet be a b-file).

Crossrefs

Cf. A309151.

A326638 For any k, the cumulative sum a(1) + a(2) + a(3) + ... + a(k) shares at least three digits with a(k). Lexicographically first sequence of positive integers without duplicate terms having this property.

Original entry on oeis.org

100, 1000, 101, 103, 104, 135, 171, 128, 119, 120, 109, 121, 256, 147, 239, 163, 304, 370, 340, 450, 240, 200, 150, 250, 600, 160, 130, 700, 170, 131, 812, 380, 168, 693, 379, 300, 110, 102, 106, 151, 167, 107, 108, 140, 111, 105, 112, 114, 115, 117, 118, 113, 126, 129, 123, 124, 125, 137, 122, 149
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Jul 15 2019

Keywords

Examples

			Here are the first terms of the sequence:
100,1000,101,103,104,135,171,128,119,120,...
and here are the cumulative sums:
100,1100,1201,1304,1408,1543,1714,1842,1961,2081,...
If we align a(n) and its cumulative sum, we see that at least three digits are shared:
  100,1000, 101, 103, 104 ,135, 171, 128, 119, 120,...
  100,1100,1201,1304,1408,1543,1714,1842,1961,2081,...
		

Crossrefs

Cf. A309151 (where no digit is shared by the cumulative sum), A316914 (where one digit is shared instead of three, by the cumulative sum), A316915 (two digits shared), A326639 (four digits shared), A326640 (five digits shared).

A326639 For any k, the cumulative sum a(1) + a(2) + a(3) + ... + a(k) shares at least four digits with a(k). Lexicographically first sequence of positive integers without duplicate terms having this property.

Original entry on oeis.org

1000, 10000, 1001, 1003, 1004, 1035, 1061, 1127, 1184, 1095, 1200, 2300, 2050, 2370, 1280, 1300, 1030, 3040, 1530, 3950, 4390, 4080, 5030, 1040, 6000, 1600, 3600, 7200, 2700, 8300, 3800, 1800, 1002, 1129, 1936, 1649, 1296, 1799, 1090, 1010, 1012, 1020, 1038, 1008, 1005, 1006, 1007, 1011, 1013, 1014, 1105, 1120, 1031
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Jul 15 2019

Keywords

Examples

			Here are the first terms of the sequence:
1000,10000,1001,1003,1004,1035,1061,1127,1184,...
and here are the cumulative sums:
1000,11000,12001,13004,14008,15043,16104,17231,18415,...
If we align a(n) and its cumulative sum, we see that at least four digits are shared:
1000,10000, 1001, 1003, 1004, 1035 ,1061, 1127, 1184,...
1000,11000,12001,13004,14008,15043,16104,17231,18415,...
		

Crossrefs

Cf. A309151 (no digit is shared by the cumulative sum instead of four digits here), A316914 (one digit is shared), A316915 (two digits shared), A326638 (three digits shared), A326640 (five digits shared).

A326640 For any k, the cumulative sum a(1) + a(2) + a(3) + ... + a(k) shares at least five digits with a(k). Lexicographically first sequence of positive integers without duplicate terms having this property.

Original entry on oeis.org

10000, 100000, 10001, 10003, 10004, 10035, 10061, 10127, 10184, 10095, 10200, 10320, 23040, 12640, 13600, 10720, 12380, 12600, 13000, 10390, 23400, 15300, 13700, 19300, 10400, 14600, 14000, 40700, 30500, 15600, 14500, 15700, 25700, 30600, 10600, 68000, 20000, 17000, 67000, 48000, 28000, 95000, 70000, 10002, 10007
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Jul 15 2019

Keywords

Examples

			Here are the first terms of the sequence:
10000,100000,10001,10003,10004,10035,10061,10127,...
and here are the cumulative sums:
10000,110000,120001,130004,140008,150043,160104,170231,...
If we align a(n) and its cumulative sum, we see that at least five digits are shared:
10000,100000, 10001, 10003, 10004, 10035, 10061, 10127,...
10000,110000,120001,130004,140008,150043,160104,170231,...
		

Crossrefs

Cf. A309151 (no digit is shared by the cumulative sum instead of five here), A316914 (one digit is shared), A316915 (two digits shared), A326638 (three digits shared), A326639 (four digits shared).

A342356 a(1) = 1, a(2) = 10; for n > 2, a(n) is the least positive integer not occurring earlier that shares both a factor and a digit with a(n-1).

Original entry on oeis.org

1, 10, 12, 2, 20, 22, 24, 4, 14, 16, 6, 26, 28, 8, 18, 15, 5, 25, 35, 30, 3, 33, 36, 32, 34, 38, 48, 40, 42, 21, 27, 57, 45, 50, 52, 54, 44, 46, 56, 58, 68, 60, 62, 64, 66, 63, 39, 9, 69, 90, 70, 7, 77, 147, 49, 84, 74, 37, 333, 93, 31, 124, 72, 75, 51, 17, 102, 80, 78, 76, 86, 82, 88, 98, 91
Offset: 1

Views

Author

Scott R. Shannon, Mar 08 2021

Keywords

Comments

After 100000 terms the lowest unused number is 18181. The sequence is likely a permutation of the positive integers.

Crossrefs

Cf. A342366 (share factor but not digit), A239664 (no shared factor or digit), A342367 (share digit but not factor), A184992, A309151, A249591.

Programs

  • Mathematica
    Block[{a = {1, 10}, m = {1, 0}, k}, Do[k = 2; While[Nand[FreeQ[a, k], GCD[k, a[[-1]]] > 1, IntersectingQ[m, IntegerDigits[k]]], k++]; AppendTo[a, k]; Set[m, IntegerDigits[k]], {i, 73}]; a] (* Michael De Vlieger, Mar 11 2021 *)
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, aset = [1, 10], {1, 10}
      for n in range(3, terms+1):
        an = 1
        anm1_digs, anm1_factors = set(str(alst[-1])), set(factorint(alst[-1]))
        while True:
          while an in aset: an += 1
          if set(str(an)) & anm1_digs != set():
            if set(factorint(an)) & anm1_factors != set():
              alst.append(an); aset.add(an); break
          an += 1
      return alst
    print(aupton(75)) # Michael S. Branicky, Mar 09 2021

A342366 a(1) = 1, a(2) = 2; for n > 2, a(n) is the least positive integer not occurring earlier that shares a factor but not a digit with a(n-1).

Original entry on oeis.org

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 20, 14, 7, 21, 30, 15, 24, 16, 22, 11, 33, 18, 26, 13, 52, 34, 17, 68, 32, 40, 25, 60, 27, 36, 28, 35, 42, 38, 19, 57, 39, 45, 63, 48, 50, 44, 55, 66, 51, 69, 23, 46, 58, 29, 87, 54, 62, 31, 248, 56, 49, 70, 64, 72, 80, 65, 78, 90, 74, 82, 41, 205, 164, 88, 76, 84
Offset: 1

Views

Author

Scott R. Shannon, Mar 09 2021

Keywords

Comments

After 100000 terms the lowest unused number is 1523. It is unknown if the sequence is a permutation of the positive integers.

Crossrefs

Cf. A342356 (share factor and digit), A239664 (no shared factor or digit), A342367 (share digit but not factor), A184992, A309151, A249591.

Programs

  • Mathematica
    Block[{a = {1, 2}, m = {2}, k}, Do[k = 2; While[Nand[FreeQ[a, k], GCD[k, a[[-1]]] > 1, ! IntersectingQ[m, IntegerDigits[k]]], k++]; AppendTo[a, k]; Set[m, IntegerDigits[k]], {i, 74}]; a] (* Michael De Vlieger, Mar 11 2021 *)
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, aset = [1, 2], {1, 2}
      for n in range(3, terms+1):
        an = 1
        anm1_digs, anm1_factors = set(str(alst[-1])), set(factorint(alst[-1]))
        while True:
          while an in aset: an += 1
          if set(str(an)) & anm1_digs == set():
            if set(factorint(an)) & anm1_factors != set():
              alst.append(an); aset.add(an); break
          an += 1
      return alst
    print(aupton(76)) # Michael S. Branicky, Mar 09 2021

A342367 a(1) = 1; for n > 1, a(n) is the least positive integer not occurring earlier that shares a digit but not a factor > 1 with a(n-1).

Original entry on oeis.org

1, 10, 11, 12, 13, 3, 23, 2, 21, 16, 15, 14, 17, 7, 27, 20, 29, 9, 19, 18, 31, 30, 37, 32, 25, 22, 123, 26, 61, 6, 65, 36, 35, 33, 34, 39, 38, 43, 4, 41, 24, 47, 40, 49, 44, 45, 46, 63, 53, 5, 51, 50, 57, 52, 55, 54, 59, 56, 67, 60, 101, 70, 71, 72, 73, 74, 75, 58, 81, 8, 83, 28, 85, 48
Offset: 1

Views

Author

Scott R. Shannon, Mar 09 2021

Keywords

Comments

After 100000 terms the lowest unused number is 99986. It is almost certain that this sequence is a permutation of the positive integers.

Crossrefs

Cf. A342356 (share factor and digit), A342366 (share factor but not digit), A239664 (no shared factor or digit), A184992, A309151, A249591.

Programs

  • Mathematica
    Block[{a = {1}, m = {1}, k}, Do[k = 2; While[Nand[FreeQ[a, k], GCD[k, a[[-1]]] == 1, IntersectingQ[m, IntegerDigits[k]]], k++]; AppendTo[a, k]; Set[m, IntegerDigits[k]], {i, 74}]; a] (* Michael De Vlieger, Mar 11 2021 *)
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, aset = [1], {1}
      for n in range(2, terms+1):
        an = 1
        anm1_digs, anm1_factors = set(str(alst[-1])), set(factorint(alst[-1]))
        while True:
          while an in aset: an += 1
          if set(str(an)) & anm1_digs != set():
            if set(factorint(an)) & anm1_factors == set():
              alst.append(an); aset.add(an); break
          an += 1
      return alst
    print(aupton(74)) # Michael S. Branicky, Mar 09 2021

A308900 An explicit example of an infinite sequence with a(1)=1 and, for n >= 2, a(n) and S(n) = Sum_{i=1..n} a(i) have no digit in common.

Original entry on oeis.org

1, 6, 4, 66, 34, 666, 334, 6666, 3334, 66666, 33334, 666666, 333334, 6666666, 3333334, 66666666, 33333334, 666666666, 333333334, 6666666666, 3333333334, 66666666666, 33333333334, 666666666666, 333333333334, 6666666666666, 3333333333334, 66666666666666, 33333333333334
Offset: 1

Views

Author

N. J. A. Sloane, Jul 15 2019

Keywords

Comments

Used in a proof that the initial terms of A309151 are correct.
The S(n) sequence is 1, 7, 11, 77, 111, 777, 1111, 7777, 11111, 77777, ...
A093137 interleaved with positive terms of A002280. - Felix Fröhlich, Jul 15 2019

Crossrefs

Programs

  • Magma
    I:=[1,6,4]; [n le 3 select I[n] else - Self(n-1) + 10*Self(n-2) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 20 2019
  • Maple
    1, seq(op([6*(10^i-1)/9, 3*(10^i-1)/9+1]), i=1..30); # Robert Israel, Jul 15 2019
  • Mathematica
    CoefficientList[Series[(1 + 7 x)/((1 + x) (1 - 10 x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 18 2019 *)
    LinearRecurrence[{-1,10,10},{1,6,4},30] (* Harvey P. Dale, Jan 02 2022 *)
  • PARI
    Vec((1+7*x)/((1+x)*(1-10*x^2)) + O(x^20)) \\ Felix Fröhlich, Jul 15 2019
    
  • PARI
    a(n) = if(n==1, 1, if(n%2==0, 6*(10^(n/2)-1)/9, 3*(10^((n-1)/2)-1)/9+1)) \\ Felix Fröhlich, Jul 15 2019
    

Formula

For even n >= 2, a(n) = 6666...66 (with n/2 6's). For odd n >= 5, a(n) = 3333...334 (with (n-3)/2 3's and a single 4).
From Robert Israel, Jul 15 2019: (Start)
G.f. (1+7*x)/((1+x)*(1-10*x^2)).
a(n) = -a(n - 1) + 10*a(n - 2) + 10*a(n - 3). (End)
a(-n) = a(n+1). - Paul Curtz, Jul 18 2019
a(n) = (1/60)*(-40*(-1)^n + (1 + (-1)^n)*(2^(2+n/2)*5^(1+n/2)) + (1 + (-1)^(n+1))*10^((1+n)/2)). - Stefano Spezia, Jul 20 2019

A364664 Lexicographically earliest permutation of the positive integers such that the successive cumulative sums reproduce the sequence itself, digit by digit.

Original entry on oeis.org

91, 10, 1, 102, 20, 4, 2, 24, 22, 8, 230, 25, 42, 7, 6, 28, 45, 14, 5, 3, 9, 58, 15, 88, 59, 46, 226, 67, 68, 16, 86, 689, 69, 87, 56, 77, 18, 599, 189, 64, 11, 90, 12, 57, 13, 251, 34, 114, 27, 21, 162, 185, 227, 223, 282, 40, 52, 423, 30, 2232, 113, 275, 32, 863, 37, 63, 38, 83, 44, 53
Offset: 1

Views

Author

Eric Angelini, Aug 01 2023

Keywords

Examples

			a(1) = 91
a(1) + a(2) = 101
a(1) + a(2) + a(3) = 102
a(1) + a(2) + a(3) + a(4) = 204
a(1) + a(2) + a(3) + a(4) + a(5) = 224
a(1) + a(2) + a(3) + a(4) + a(5) + a(6) = 228; etc.
The succession of the above results is:
  91, 101, 102, 204, 224, 228, ...
The first terms of the sequence are:
  91, 10, 1, 102, 20, 4, 2, 24, 22, 8, ...
We see that the successive digits are the same in the two sequences.
		

Crossrefs

Cf. A309151.

Programs

  • Mathematica
    Nest[(a=#;AppendTo[a,(new=Flatten[IntegerDigits/@Accumulate@#][[Length@Flatten[IntegerDigits/@a]+1;;]];
    k=1;While[MemberQ[a,FromDigits@new[[;;k]]]||new[[k+1]]==0,k++];FromDigits@new[[;;k]])])&,{91,10},77] (* Giorgos Kalogeropoulos, Aug 05 2023 *)

Extensions

More terms from Giorgos Kalogeropoulos, Aug 05 2023
a(28) on corrected by Giorgos Kalogeropoulos, Aug 05 2023

A364697 Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit.

Original entry on oeis.org

1, 11, 2, 25, 50, 27, 500, 7, 4, 2500, 3, 71, 250000, 259, 8, 750000, 10, 39, 5000000, 2598, 7500000000, 77, 9, 6, 2500000000, 5, 53, 533, 75000000001, 38, 383, 43, 75000000000000, 35, 84, 13, 103, 12, 5000000000000, 28, 67, 30, 48, 25000000000000000, 21, 504, 78, 61, 87
Offset: 1

Views

Author

Eric Angelini, Aug 03 2023

Keywords

Comments

If we want the sequence to be the lexicographically earliest permutation of the integers > 0, we must start with a(1) = 1 and a(2) = 11. With a(2) < 11, the sequence stops immediately.

Examples

			a(1) = 1
a(1) * a(2) = 11
a(1) * a(2) * a(3) = 22
a(1) * a(2) * a(3) * a(4) = 550
a(1) * a(2) * a(3) * a(4) * a(5) = 27500
a(1) * a(2) * a(3) * a(4) * a(5) * a(6) = 742500; etc.
The succession of the above results is:
  1, 11, 22, 550, 27500, 742500, ...
The first terms of the sequence are:
  1, 11, 2, 25, 50, 27, 500, 7, 4, 2500,, ...
We see that the successive digits are the same in the two sequences.
		

Crossrefs

Programs

  • Mathematica
    Nest[(a=#;AppendTo[a,(new=Flatten[IntegerDigits/@Table[Times@@a[[;;i]],{i,Length@a}]][[Length@Flatten[IntegerDigits/@a]+1;;]];
    k=1;While[MemberQ[a,FromDigits@new[[;;k]]]||new[[k+1]]==0,k++];FromDigits@new[[;;k]])])&,{1,11,2,25},45] (* Giorgos Kalogeropoulos, Aug 05 2023 *)
Showing 1-10 of 10 results.