cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A316983 Number of non-isomorphic self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
  (1111),
  (1)(222), (2)(122), (11)(22), (12)(12),
  (1)(1)(23), (1)(2)(33), (1)(3)(23),
  (1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0]  [2 0]  [2 1]  [1 1]
. [0 1]  [0 2]  [1 0]  [1 1]
.
. [2 0 0]  [1 1 0]  [0 1 1]
. [0 1 0]  [1 0 0]  [1 0 0]
. [0 0 1]  [0 0 1]  [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Row sums of A320796.
Main diagonal of A318805.

Programs

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018

A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

Original entry on oeis.org

1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
Offset: 0

Views

Author

Vladeta Jovovic, Mar 03 2008

Keywords

Comments

Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018

Examples

			a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
From _Gus Wiseman_, Feb 23 2018: (Start)
The a(3) = 9 normal semistandard Young tableaux:
1   1 2   1 3   1 2   1 1   1 2 3   1 2 2   1 1 2   1 1 1
2   3     2     2     2
3
(End)
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 33 matrices:
[4]
.
[30][21][20][11][10][02][01]
[01][10][02][11][03][20][12]
.
[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
		

Crossrefs

Programs

  • Maple
    gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
  • Mathematica
    Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}]  (* Vaclav Kotesovec, Jul 03 2014 *)
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)

Formula

G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009

Extensions

More terms from Alois P. Heinz, Sep 25 2008

A321405 Number of non-isomorphic self-dual set systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 6, 9, 16, 28, 47
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

Also the number of (0,1) symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(8) = 16 set systems:
  {{1}}  {{1}{2}}  {{2}{12}}    {{1}{3}{23}}    {{2}{13}{23}}
                   {{1}{2}{3}}  {{1}{2}{3}{4}}  {{1}{2}{4}{34}}
                                                {{1}{2}{3}{4}{5}}
.
  {{12}{13}{23}}        {{13}{23}{123}}          {{1}{13}{14}{234}}
  {{3}{23}{123}}        {{1}{23}{24}{34}}        {{12}{13}{24}{34}}
  {{1}{3}{24}{34}}      {{1}{4}{34}{234}}        {{1}{24}{34}{234}}
  {{2}{4}{12}{34}}      {{2}{13}{24}{34}}        {{2}{14}{34}{234}}
  {{1}{2}{3}{5}{45}}    {{3}{4}{14}{234}}        {{3}{4}{134}{234}}
  {{1}{2}{3}{4}{5}{6}}  {{1}{2}{4}{35}{45}}      {{4}{13}{14}{234}}
                        {{1}{3}{5}{23}{45}}      {{1}{2}{34}{35}{45}}
                        {{1}{2}{3}{4}{6}{56}}    {{1}{2}{5}{45}{345}}
                        {{1}{2}{3}{4}{5}{6}{7}}  {{1}{3}{24}{35}{45}}
                                                 {{1}{4}{5}{25}{345}}
                                                 {{2}{4}{12}{35}{45}}
                                                 {{4}{5}{13}{23}{45}}
                                                 {{1}{2}{3}{5}{46}{56}}
                                                 {{1}{2}{4}{6}{34}{56}}
                                                 {{1}{2}{3}{4}{5}{7}{67}}
                                                 {{1}{2}{3}{4}{5}{6}{7}{8}}
		

Crossrefs

A055884 Euler transform of partition triangle A008284.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Number of multiset partitions of length-k integer partitions of n. - Gus Wiseman, Nov 09 2018

Examples

			From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
   1
   1   2
   1   2   3
   1   4   4   5
   1   4   8   7   7
   1   6  12  16  12  11
   1   6  17  25  28  19  15
   1   8  22  43  49  48  30  22
   1   8  30  58  87  88  77  45  30
   ...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
  {{5}}   {{1,4}}     {{1,1,3}}       {{1,1,1,2}}         {{1,1,1,1,1}}
          {{2,3}}     {{1,2,2}}      {{1},{1,1,2}}       {{1},{1,1,1,1}}
         {{1},{4}}   {{1},{1,3}}     {{1,1},{1,2}}       {{1,1},{1,1,1}}
         {{2},{3}}   {{1},{2,2}}     {{2},{1,1,1}}      {{1},{1},{1,1,1}}
                     {{2},{1,2}}    {{1},{1},{1,2}}     {{1},{1,1},{1,1}}
                     {{3},{1,1}}    {{1},{2},{1,1}}    {{1},{1},{1},{1,1}}
                    {{1},{1},{3}}  {{1},{1},{1},{2}}  {{1},{1},{1},{1},{1}}
                    {{1},{2},{2}}
(End)
		

Crossrefs

Row sums give A001970.
Main diagonal gives A000041.
Columns k=1-2 give: A057427, A052928.
T(n+2,n+1) gives A000070.
T(2n,n) gives A360468.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n,k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 17 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)

A320797 Number of non-isomorphic self-dual multiset partitions of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 15, 33, 60, 121
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n and no rows or columns summing to 0 or 1, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 15 multiset partitions:
  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}      {{1111111}}
                   {{11}{22}}  {{11}{122}}  {{111}{222}}    {{111}{1222}}
                   {{12}{12}}  {{11}{222}}  {{112}{122}}    {{111}{2222}}
                               {{12}{122}}  {{11}{2222}}    {{112}{1222}}
                                            {{12}{1222}}    {{11}{22222}}
                                            {{22}{1122}}    {{12}{12222}}
                                            {{11}{22}{33}}  {{122}{1122}}
                                            {{11}{23}{23}}  {{22}{11222}}
                                            {{12}{13}{23}}  {{11}{12}{233}}
                                                            {{11}{22}{233}}
                                                            {{11}{22}{333}}
                                                            {{11}{23}{233}}
                                                            {{12}{12}{333}}
                                                            {{12}{13}{233}}
                                                            {{13}{23}{123}}
Inequivalent representatives of the a(6) = 9 symmetric matrices with no rows or columns summing to 1:
  [6]
.
  [3 0]  [2 1]  [4 0]  [3 1]  [2 2]
  [0 3]  [1 2]  [0 2]  [1 1]  [2 0]
.
  [2 0 0]  [2 0 0]  [1 1 0]
  [0 2 0]  [0 1 1]  [1 0 1]
  [0 0 2]  [0 1 1]  [0 1 1]
		

Crossrefs

A320808 Regular tetrangle where T(n,k,i) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n, with i columns.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 2, 4, 0, 1, 5, 4, 0, 1, 5, 5, 5, 0, 0, 1, 0, 2, 4, 0, 2, 10, 8, 0, 1, 9, 13, 7, 0, 1, 5, 12, 9, 7, 0, 0, 1, 0, 3, 6, 0, 3, 16, 12, 0, 2, 24, 33, 16, 0, 1, 14, 36, 29, 12, 0, 1, 9, 23, 29
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Tetrangle begins:
  1  0    0      0        0          0
     0 1  0 1    0 1      0 1        0 1
          0 1 2  0 1 2    0 2 4      0 2 4
                 0 1 2 3  0 1 5 4    0 2 10 8
                          0 1 5 5 5  0 1 9 13 7
                                     0 1 5 12 9 7
		

Crossrefs

Triangle sums are A007716. Triangle of row sums is A320801. Triangle of column sums is A317533. Triangle of last columns (without its leading column 1,0,0,0,...) is A055884.

A135588 Number of symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 20, 74, 302, 1314, 6122, 29982, 154718, 831986, 4667070, 27118610, 163264862, 1013640242, 6488705638, 42687497378, 288492113950, 1998190669298, 14177192483742, 102856494496050, 762657487965086, 5771613810502002, 44555989658479726, 350503696871063138
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2008, Mar 03 2008, Mar 04 2008

Keywords

Examples

			From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 20 matrices:
  [11]
  [11]
.
  [110][101][100][100][011][010][010][001][001]
  [100][010][011][001][100][110][101][010][001]
  [001][100][010][011][100][001][010][101][110]
.
  [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
  [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
  [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
  [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[(1+x)^k*(1+x^2)^(k*(k-1)/2)/2^(k+1),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 02 2014 *)
    Join[{1},  Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}]] (* Gus Wiseman, Nov 14 2018 *)

Formula

G.f.: Sum_{n>=0} (1+x)^n*(1+x^2)^binomial(n,2)/2^(n+1).
G.f.: Sum_{n>=0} (Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(1+x)^k*(1+x^2)^binomial(k,2)).

A320801 Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3
   0   1   3   6
   0   1   6  10  16
   0   1   6  20  30  34
   0   1   9  31  75  92  90
   0   1   9  45 126 246 272 211
   0   1  12  60 223 501 839 823 558
		

Crossrefs

Row sums are A007716. Last column is A049311.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
    G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x,y], [x^t,y^t])) + O(x*x^n))); s/n!}
    T(n)=[Vecrev(p) | p<-Vec(G(n))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 16 2024

A321401 Number of non-isomorphic strict self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 29, 57, 117, 240, 498
Offset: 0

Views

Author

Gus Wiseman, Nov 09 2018

Keywords

Comments

Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows (or columns) are all different.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1},{2}}  {{1},{2,2}}    {{1,1},{2,2}}      {{1,1},{1,2,2}}
                    {{2},{1,2}}    {{1},{2,2,2}}      {{1,1},{2,2,2}}
                    {{1},{2},{3}}  {{2},{1,2,2}}      {{1,2},{1,2,2}}
                                   {{1},{2},{3,3}}    {{1},{2,2,2,2}}
                                   {{1},{3},{2,3}}    {{2},{1,2,2,2}}
                                   {{1},{2},{3},{4}}  {{1},{2,2},{3,3}}
                                                      {{1},{2},{3,3,3}}
                                                      {{1},{3},{2,3,3}}
                                                      {{2},{1,2},{3,3}}
                                                      {{2},{1,3},{2,3}}
                                                      {{1},{2},{3},{4,4}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

A321406 Number of non-isomorphic self-dual set systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 4
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

Also the number of 0-1 symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different and none sums to 1.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(10) = 4 set systems:
   6: {{1,2},{1,3},{2,3}}
   7: {{1,3},{2,3},{1,2,3}}
   8: {{1,2},{1,3},{2,4},{3,4}}
   9: {{1,2},{1,3},{1,4},{2,3,4}}
   9: {{1,2},{1,4},{3,4},{2,3,4}}
  10: {{1,2},{2,4},{1,3,4},{2,3,4}}
  10: {{1,3},{2,4},{1,3,4},{2,3,4}}
  10: {{1,4},{2,4},{3,4},{1,2,3,4}}
  10: {{1,2},{1,3},{2,4},{3,5},{4,5}}
		

Crossrefs

Showing 1-10 of 18 results. Next