A321847
E.g.f.: exp(x/(1 - 4*x)).
Original entry on oeis.org
1, 1, 9, 121, 2161, 48081, 1279801, 39631369, 1398961761, 55422807841, 2434261023721, 117366299630361, 6161301265353169, 349768597919934961, 21347094823271661081, 1393695557886847095721, 96910923898115717350081, 7149718240571434690591809
Offset: 0
-
seq(coeff(series(factorial(n)*exp(x/(1-4*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[4^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (8n - 7)*a[n - 1] - 16(n - 2)(n - 1) *a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
CoefficientList[Series[Exp[x/(1 - 4*x)], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 07 2018 *)
-
(a[0] : 1, a[1] : 1, a[n] := (8*n - 7)*a[n-1] - 16*(n-2)*(n-1)*a[n-2], makelist(a[n], n, 0, 20)); /* Franck Maminirina Ramaharo, Nov 27 2018 */
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-4*x)))) \\ Michel Marcus, Nov 25 2018
A321848
E.g.f.: exp(x/(1-5*x)).
Original entry on oeis.org
1, 1, 11, 181, 3961, 108101, 3532651, 134415961, 5834249681, 284391878761, 15378011541451, 913297438474301, 59086483931657161, 4135583008765323181, 311324086814794408811, 25079793551003791168801, 2152597370423901820231201, 196089415332225446044417361
Offset: 0
-
seq(coeff(series(factorial(n)*exp(x/(1-5*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[5^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (10 n - 9)*a[n - 1] - 25(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
With[{nn=20},CoefficientList[Series[Exp[x/(1-5x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2024 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-5*x)))) \\ Michel Marcus, Nov 25 2018
A321849
Expansion of e.g.f.: exp(x/(1-6*x)).
Original entry on oeis.org
1, 1, 13, 253, 6553, 211801, 8201701, 369979093, 19047250993, 1101705494833, 70715424362941, 4987040544656941, 383243311962126793, 31871863566298601353, 2851588139929576342933, 273093945561709965890821, 27871997808801906673665121
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 08 2018
-
[1] cat [&+[6^(n-k)* Factorial(n)/Factorial(k)*Binomial(n-1, k-1): k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
-
seq(coeff(series(factorial(n)*exp(x/(1-6*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[6^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (12n - 11)*a[n - 1] - 36(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-6*x)))) \\ Michel Marcus, Nov 25 2018
-
f= exp(x/(1-6*x))
g=f.taylor(x,0,13)
L=g.coefficients()
coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
coeffs # G. C. Greubel, Dec 08 2018
A321850
E.g.f.: exp(x/(1-7*x)).
Original entry on oeis.org
1, 1, 15, 337, 10081, 376461, 16849351, 878797165, 52324954977, 3501300491641, 260062721279551, 21228108532279881, 1888618754806601665, 181873163575529411077, 18846187172580219099831, 2090754000231731874682021, 247221828043044971020645441
Offset: 0
-
[1] cat [&+[7^(n-k)*Factorial(n)/Factorial(k)*Binomial(n-1, k-1): k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
-
seq(coeff(series(factorial(n)*exp(x/(1-7*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[7^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (14n - 13)*a[n - 1] - 49(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-7*x)))) \\ Michel Marcus, Nov 25 2018
A362188
Expansion of e.g.f. exp(x/(1-3*x)^(2/3)).
Original entry on oeis.org
1, 1, 5, 43, 513, 7781, 142861, 3075255, 75879553, 2110145833, 65275127541, 2222656864451, 82595058938305, 3325666654250253, 144214230714973693, 6700048267934377231, 331988586859256529921, 17475202293073669341905, 973765103770578798536293
Offset: 0
A362205
Expansion of e.g.f. exp(x/(1-3*x)^(1/3)).
Original entry on oeis.org
1, 1, 3, 19, 185, 2401, 38731, 745123, 16630769, 422157025, 12005107091, 377957000851, 13048046175913, 490052749100929, 19890724260375515, 867582126490694371, 40467070835396193761, 2009901604798183428673, 105901641663222888913699
Offset: 0
A341033
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 73, 361, 1009, 2161, 3961, ...
1, 501, 4361, 17341, 48081, 108101, ...
-
T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
-
{T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
-
{T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}
Showing 1-7 of 7 results.
Comments