cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A334579 a(n) = Sum_{d|n} gcd(tau(d), sigma(d)).

Original entry on oeis.org

1, 2, 3, 3, 3, 8, 3, 4, 4, 6, 3, 11, 3, 8, 9, 5, 3, 12, 3, 13, 9, 8, 3, 16, 4, 6, 8, 11, 3, 24, 3, 8, 9, 6, 9, 16, 3, 8, 9, 16, 3, 26, 3, 15, 16, 8, 3, 19, 6, 10, 9, 9, 3, 24, 9, 20, 9, 6, 3, 45, 3, 8, 12, 9, 9, 26, 3, 13, 9, 24, 3, 24, 3, 6, 12, 11, 9, 24, 3
Offset: 1

Views

Author

Jaroslav Krizek, May 06 2020

Keywords

Comments

Inverse Möbius transform of A009205. - Antti Karttunen, May 19 2020

Examples

			a(6) = gcd(tau(1), sigma(1)) + gcd(tau(2), sigma(2)) + gcd(tau(3), sigma(3)) + gcd(tau(6), sigma(6)) = gcd(1, 1) + gcd(2, 3) + gcd(2, 4) + gcd(4, 12) = 1 + 1 + 2 + 4 = 8.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334490 (Sum_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009205 (gcd(tau(n), sigma(n))).
Cf. A334729 (with product, instead of sum).

Programs

  • Magma
    [&+[GCD(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, GCD[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 07 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(numdiv(d), sigma(d))); \\ Michel Marcus, May 07 2020

Formula

a(p) = 3 for p = odd primes (A065091).

A334490 a(n) = Sum_{d|n} gcd(d, sigma(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 9, 2, 4, 3, 5, 2, 14, 2, 5, 6, 5, 2, 13, 2, 8, 4, 5, 2, 27, 3, 5, 4, 34, 2, 21, 2, 6, 6, 5, 4, 19, 2, 5, 4, 19, 2, 19, 2, 10, 10, 5, 2, 32, 3, 7, 6, 8, 2, 20, 4, 43, 4, 5, 2, 40, 2, 5, 6, 7, 4, 21, 2, 8, 6, 11, 2, 35, 2, 5, 8, 10, 4, 19, 2, 22
Offset: 1

Views

Author

Jaroslav Krizek, May 03 2020

Keywords

Examples

			a(6) = gcd(1, sigma(1)) + gcd(2, sigma(2)) + gcd(3, sigma(3)) + gcd(6, sigma(6)) = gcd(1, 1) + gcd(2, 3) + gcd(3, 4) + gcd(6, 12) = 1 + 1 + 1 + 6 = 9.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A000203 (Sum_{d|n} gcd(d, pod(d)) = sigma(n)).
Cf. A000040, A007955 (pod(n)), A334491 (for product instead of sum).
Inverse Möbius transform of A009194.

Programs

  • Magma
    [&+[GCD(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, GCD[#, DivisorSigma[1, #]] &]; Array[a, 80] (* Amiram Eldar, May 03 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(d, sigma(d))); \\ Michel Marcus, May 03 2020

Formula

a(p) = 2 for p = primes (A000040).
a(n) = Sum_{d|n} A009194(d). - Antti Karttunen, May 09 2020

A334664 a(n) = Product_{d|n} gcd(d, tau(d)).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 8, 3, 4, 1, 24, 1, 4, 1, 8, 1, 72, 1, 8, 1, 4, 1, 768, 1, 4, 3, 8, 1, 16, 1, 16, 1, 4, 1, 3888, 1, 4, 1, 256, 1, 16, 1, 8, 9, 4, 1, 1536, 1, 8, 1, 8, 1, 144, 1, 256, 1, 4, 1, 2304, 1, 4, 9, 16, 1, 16, 1, 8, 1, 16, 1, 1492992, 1, 4, 3, 8, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2020

Keywords

Examples

			a(6) = gcd(1, tau(1)) * gcd(2, tau(2)) * gcd(3, tau(3)) * gcd(6, tau(6)) = gcd(1, 1) * gcd(2, 2) * gcd(3, 2) * gcd(6, 4) = 1 * 2 * 1 * 2 = 4.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334491 (Product_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009191 (gcd(n, tau(n))).

Programs

  • Magma
    [&*[GCD(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Times@@GCD[Divisors[n],DivisorSigma[0,Divisors[n]]],{n,80}] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(d[k], numdiv(d[k]))); \\ Michel Marcus, May 08-11 2020

Formula

a(p) = 1 for p = odd primes (A065091).

A334782 a(n) = Sum_{d|n} lcm(d, tau(d)).

Original entry on oeis.org

1, 3, 7, 15, 11, 21, 15, 23, 16, 33, 23, 45, 27, 45, 77, 103, 35, 48, 39, 105, 105, 69, 47, 77, 86, 81, 124, 141, 59, 231, 63, 199, 161, 105, 165, 108, 75, 117, 189, 153, 83, 315, 87, 213, 176, 141, 95, 397, 162, 258, 245, 249, 107, 372, 253, 205, 273, 177
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2020

Keywords

Examples

			a(6) = lcm(1, tau(1)) + lcm(2, tau(2)) + lcm(3, tau(3)) + lcm(6, tau(6)) = lcm(1, 1) + lcm(2, 2) + lcm(3, 2) + lcm(6, 4) = 1 + 2 + 6 + 12 = 21.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334783 (Sum_{d|n} lcm(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009230 (lcm(n, tau(n))).

Programs

  • Magma
    [&+[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, LCM[#, DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(d, numdiv(d))); \\ Michel Marcus, May 10 2020

Formula

a(p) = 2p + 1 for p = odd primes (A065091).
Showing 1-5 of 5 results.