cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

This is spanning edge-connectivity. The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. The non-spanning edge-connectivity of a graph (A327236) is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty. Compare to vertex-connectivity (A259862). - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
     1;
     1,    1;
     2,    1,    1;
     5,    3,    2,    1;
    13,   10,    8,    2,   1;
    44,   52,   41,   15,   3,  1;
   191,  351,  352,  121,  25,  3, 1;
  1229, 3714, 4820, 2159, 378, 41, 4, 1;
  ...
		

Crossrefs

Row sums give A000088, n >= 1.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.

Extensions

a(22)-a(55) added by Andrew Howroyd, Aug 11 2019

A001072 Number of minimally 2-edge-connected non-isomorphic graphs with n nodes.

Original entry on oeis.org

1, 1, 3, 4, 11, 23, 63, 159, 459, 1331, 4083, 12750
Offset: 3

Views

Author

Keywords

References

  • Calculated by Sridar K. Pootheri.

Crossrefs

Cf. A324410.

Extensions

a(11) and a(12) added using tinygraph by Falk Hüffner, Jan 20 2016
a(13) and a(14) added by Jens M. Schmidt, Feb 27 2019

A052443 Number of simple unlabeled n-node graphs of connectivity 2.

Original entry on oeis.org

0, 0, 1, 2, 7, 39, 332, 4735, 113176, 4629463, 327695586, 40525166511, 8850388574939, 3453378695335727, 2435485662537561705, 3137225298932374490227, 7448146273273417700880931, 32837456713651735794742705141, 270528237651574516777595556494978, 4186091025846007046878947026003803389
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=2 of A259862.
The labeled version is A327198.
2-vertex-connected graphs are A013922.

Programs

Formula

a(n) = A002218(n) - A006290(n) for n > 2. - Andrew Howroyd, Sep 04 2019

Extensions

Name clarified and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(2)-a(3) corrected by Andrew Howroyd, Aug 28 2019
a(12)-a(20) from Andrew Howroyd, Sep 04 2019

A052442 Number of simple unlabeled n-node graphs of connectivity 1.

Original entry on oeis.org

0, 1, 1, 3, 11, 56, 385, 3994, 67014, 1973029, 105731474, 10439496931, 1902968718515, 641662974453892, 401490336727861176, 467924684115578671326, 1019752390010650509117288, 4171131179469162937375841939, 32134378048921787829834095722663, 467778894124037894839737804918978194
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=1 of A259862.

Programs

Formula

a(n) = A001349(n) - A002218(n) for n > 2. - Andrew Howroyd, Sep 04 2019

Extensions

Terms a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(1)-a(2) corrected by Andrew Howroyd, Aug 28 2019
a(12)-a(20) from Andrew Howroyd, Sep 04 2019

A052445 Number of simple unlabeled n-node graphs of connectivity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 21, 345, 13429, 1109105, 162318088, 39460518399
Offset: 1

Views

Author

Keywords

Examples

			The a(6) = 3 exactly-4-connected 6-node graphs are the complete graph K_6 with 1, 2, or 3 non-adjacent edges removed.
		

Crossrefs

Formula

a(n) = A086216(n) - A086217(n). - Andrey Zabolotskiy, Nov 20 2017

Extensions

Partially edited by N. J. A. Sloane, Jul 08 2015 at the suggestion of Brendan McKay
a(8)-a(11) copied from A259862 by Andrey Zabolotskiy, Nov 20 2017
a(4)-a(5) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Dec 12 2021

A324417 Number of minimally 10-edge-connected non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 25, 2498
Offset: 1

Views

Author

Jens M. Schmidt, Mar 03 2019

Keywords

Crossrefs

A324418 Number of minimally 4-connected non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 5, 13, 83, 704, 8738, 136391
Offset: 1

Views

Author

Jens M. Schmidt, Mar 03 2019

Keywords

Crossrefs

A241704 Number of simple unlabeled n-node graphs of edge-connectivity 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 41, 1095, 104829, 21981199, 8077770931
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=5 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241705.

Extensions

a(11)-a(12) by Jens M. Schmidt, Feb 18 2019

A241705 Number of simple unlabeled n-node graphs of edge-connectivity 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 65, 3441, 857365, 487560158, 466534106494
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=6 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241704.

Extensions

a(11)-a(13) by Jens M. Schmidt, Feb 20 2019
Showing 1-10 of 47 results. Next