cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A327114 Number of labeled simple graphs covering n vertices with cut-connectivity 1.

Original entry on oeis.org

0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

The cut-connectivity of a graph is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327126.
The unlabeled version is A052442, if we assume A052442(2) = 0.
Connected non-separable graphs are A013922.
BII-numbers for cut-connectivity 1 are A327098.
Set-systems with cut-connectivity 1 are counted by A327197.
Labeled simple graphs with vertex-connectivity 1 are A327336.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
  • PARI
    seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A001187(n) - A013922(n), if we assume A001187(1) = 0.

A052443 Number of simple unlabeled n-node graphs of connectivity 2.

Original entry on oeis.org

0, 0, 1, 2, 7, 39, 332, 4735, 113176, 4629463, 327695586, 40525166511, 8850388574939, 3453378695335727, 2435485662537561705, 3137225298932374490227, 7448146273273417700880931, 32837456713651735794742705141, 270528237651574516777595556494978, 4186091025846007046878947026003803389
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=2 of A259862.
The labeled version is A327198.
2-vertex-connected graphs are A013922.

Programs

Formula

a(n) = A002218(n) - A006290(n) for n > 2. - Andrew Howroyd, Sep 04 2019

Extensions

Name clarified and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(2)-a(3) corrected by Andrew Howroyd, Aug 28 2019
a(12)-a(20) from Andrew Howroyd, Sep 04 2019

A327336 Number of labeled simple graphs with vertex-connectivity 1.

Original entry on oeis.org

0, 0, 1, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040, 9672967865350359173180572164444160
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

Same as A327114 except a(2) = 1.
The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton.

Examples

			The a(2) = 1 through a(4) = 28 edge-sets:
  {12}  {12,13}  {12,13,14}
        {12,23}  {12,13,24}
        {13,23}  {12,13,34}
                 {12,14,23}
                 {12,14,34}
                 {12,23,24}
                 {12,23,34}
                 {12,24,34}
                 {13,14,23}
                 {13,14,24}
                 {13,23,24}
                 {13,23,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
                 {12,13,14,23}
                 {12,13,14,24}
                 {12,13,14,34}
                 {12,13,23,24}
                 {12,13,23,34}
                 {12,14,23,24}
                 {12,14,24,34}
                 {12,23,24,34}
                 {13,14,23,34}
                 {13,14,24,34}
                 {13,23,24,34}
                 {14,23,24,34}
		

Crossrefs

Column k = 1 of A327334.
The unlabeled version is A052442.
Connected non-separable graphs are A013922.
Set-systems with vertex-connectivity 1 are A327128.
Labeled simple graphs with cut-connectivity 1 are A327114.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==1&]],{n,0,4}]

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019

A052445 Number of simple unlabeled n-node graphs of connectivity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 21, 345, 13429, 1109105, 162318088, 39460518399
Offset: 1

Views

Author

Keywords

Examples

			The a(6) = 3 exactly-4-connected 6-node graphs are the complete graph K_6 with 1, 2, or 3 non-adjacent edges removed.
		

Crossrefs

Formula

a(n) = A086216(n) - A086217(n). - Andrey Zabolotskiy, Nov 20 2017

Extensions

Partially edited by N. J. A. Sloane, Jul 08 2015 at the suggestion of Brendan McKay
a(8)-a(11) copied from A259862 by Andrey Zabolotskiy, Nov 20 2017
a(4)-a(5) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Dec 12 2021

A327127 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A graph with one vertex and no edges is considered to be connected. Except for complete graphs, this is the same as vertex-connectivity (A259862).
There are two ways to define (vertex) connectivity: the minimum size of a vertex cut, and the minimum of the maximum number of internally disjoint paths between two distinct vertices. For non-complete graphs they coincide, which is tremendously useful. For complete graphs with at least 2 vertices, there are no cuts but the second method still works so it is customary to use it to justify the connectivity of K_n being n-1. - Brendan McKay, Aug 28 2019.

Examples

			Triangle begins:
   1
   0  1
   1  0  1
   2  1  0  1
   5  3  2  0  1
  13 11  7  2  0  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A000719, if we assume A000719(0) = 1.
Column k = 1 is A052442, if we assume A052442(1) = 1 and A052442(2) = 0.
The labeled version is A327125.
A more standard version (zeros removed) is A259862.

A327197 Number of set-systems covering n vertices with cut-connectivity 1.

Original entry on oeis.org

0, 1, 0, 24, 1984
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain in a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity.

Examples

			The a(3) = 24 set-systems:
  {12}{13}  {1}{12}{13}  {1}{2}{12}{13}  {1}{2}{3}{12}{13}
  {12}{23}  {1}{12}{23}  {1}{2}{12}{23}  {1}{2}{3}{12}{23}
  {13}{23}  {1}{13}{23}  {1}{2}{13}{23}  {1}{2}{3}{13}{23}
            {2}{12}{13}  {1}{3}{12}{13}
            {2}{12}{23}  {1}{3}{12}{23}
            {2}{13}{23}  {1}{3}{13}{23}
            {3}{12}{13}  {2}{3}{12}{13}
            {3}{12}{23}  {2}{3}{12}{23}
            {3}{13}{23}  {2}{3}{13}{23}
		

Crossrefs

The BII-numbers of these set-systems are A327098.
The same for cut-connectivity 2 is A327113.
The non-covering version is A327128.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327128.

A327198 Number of labeled simple graphs covering n vertices with vertex-connectivity 2.

Original entry on oeis.org

0, 0, 0, 1, 9, 212, 9600, 789792, 114812264, 29547629568, 13644009626400, 11489505388892800, 17918588321874717312, 52482523149603539181312, 292311315623259148521270784, 3129388799344153886272170009600, 64965507855114369076680860799267840
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==2&]],{n,0,5}]

Formula

a(n) = A013922(n) - A005644(n) for n >= 3. - Andrew Howroyd, Dec 26 2020

Extensions

Terms a(6) and beyond from Andrew Howroyd, Dec 26 2020

A052444 Number of simple unlabeled n-node graphs of connectivity 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 111, 2004, 66410, 3902344, 388624106, 65142804740
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A006290(n) - A086216(n). - Andrew Howroyd, Sep 04 2019

Extensions

Name edited and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(3)-a(4) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Nov 28 2021

A327128 Number of set-systems with n vertices whose edge-set has cut-connectivity 1.

Original entry on oeis.org

0, 1, 2, 27, 2084
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. We define the cut-connectivity (A326786, A327237, A327126) of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039, A327040), this is the same as vertex-connectivity (A327334, A327051).

Crossrefs

The covering version is A327197.
The BII-numbers of these set-systems are A327098.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]

Formula

Binomial transform of A327197.
Showing 1-10 of 10 results.