cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A047993 Number of balanced partitions of n: the largest part equals the number of parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 2, 4, 4, 6, 7, 11, 11, 16, 19, 25, 29, 40, 45, 60, 70, 89, 105, 134, 156, 196, 232, 285, 336, 414, 485, 591, 696, 839, 987, 1187, 1389, 1661, 1946, 2311, 2702, 3201, 3731, 4400, 5126, 6018, 6997, 8195, 9502, 11093, 12849, 14949, 17281, 20062
Offset: 1

Views

Author

Keywords

Comments

Useful in the creation of plane partitions with C3 or C3v symmetry.
The function T[m,a,b] used here gives the partitions of m whose Ferrers plot fits within an a X b box.
Central terms of triangle in A063995: a(n) = A063995(n,0). - Reinhard Zumkeller, Jul 24 2013
Sequence enumerates the collection of partitions of size n that are in the monoid of Dyson rank=0, or balanced partitions, under the binary operation A*B = (a1,a2,...,a[k-1],k)*(b1,...,b[n-1,n) = (a1*b1,...,a1*n,a2*b1,...,a2*n,...,k*b1,...,k*n), where A is a partition with k parts and B is a partition with n parts, and A*B is a partition with k*n parts. Note that the rank of A*B is 0, as required. For example, the product of the rank 0 partitions (1,2,3) of 6 and (1,1,3) of 5 is the rank 0 partition (1,1,2,2,3,3,3,6,9) of 30. There is no rank zero partition of 2, as shown in the sequence. It can be seen that any element of the monoid that partitions an odd prime p or a composite number of form 2p cannot be a product of smaller nontrivial partitions, whether in this monoid or not. - Richard Locke Peterson, Jul 15 2018
The "multiplication" given above was noted earlier by Franklin T. Adams-Watters in A122697. - Richard Peterson, Jul 19 2023
The Heinz numbers of these integer partitions are given by A106529. - Gus Wiseman, Mar 09 2019

Examples

			From _Joerg Arndt_, Oct 08 2012: (Start)
a(12) = 7 because the partitions of 12 where the largest part equals the number of parts are
   2 + 3 + 3 + 4,
   2 + 2 + 4 + 4,
   1 + 3 + 4 + 4,
   1 + 2 + 2 + 2 + 5,
   1 + 1 + 2 + 3 + 5,
   1 + 1 + 1 + 4 + 5, and
   1 + 1 + 1 + 1 + 2 + 6.
(End)
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(13) = 11 integer partitions:
  1  21  22  311  321  322   332   333    4222   4322    4332    4333
                       331   4211  4221   4321   4331    4422    4432
                       4111        4311   4411   4421    4431    4441
                                   51111  52111  52211   52221   52222
                                                 53111   53211   53221
                                                 611111  54111   53311
                                                         621111  54211
                                                                 55111
                                                                 622111
                                                                 631111
                                                                 7111111
(End)
		

Crossrefs

Programs

  • Haskell
    a047993 = flip a063995 0  -- Reinhard Zumkeller, Jul 24 2013
  • Maple
    A047993 := proc(n)
         a := 0 ;
         for p in combinat[partition](n) do
            r := max(op(p))-nops(p) ;
            if r = 0 then
                 a := a+1 ;
            end if;
         end do:
         a ;
     end proc:
    seq(A047993(n),n=1..20) ; # Emeric Deutsch, Dec 11 2004
  • Mathematica
    Table[ Count[Partitions[n], par_List/; First[par]===Length[par]], {n, 12}] or recur: Sum[T[n-(2m-1), m-1, m-1], {m, Ceiling[Sqrt[n]], Floor[(n+1)/2]}] with T[m_, a_, b_]/; b < a := T[m, b, a]; T[m_, a_, b_]/; m > a*b := 0; T[m_, a_, b_]/; (2m > a*b) := T[a*b-m, a, b]; T[m_, 1, b_] := If[b < m, 0, 1]; T[0, , ] := 1; T[m_, a_, b_] := T[m, a, b]=Sum[T[m-a*i, a-1, b-i], {i, 0, Floor[m/a]}];
    Table[Sum[ -(-1)^k*(p[n-(3*k^2-k)/2] - p[n-(3*k^2+k)/2]), {k, 1, Floor[(1+Sqrt[1+24*n])/6]}] /. p -> PartitionsP, {n, 1, 64}] (* Wouter Meeussen *)
    (* also *)
    Table[Count[IntegerPartitions[n], q_ /; Max[q] == Length[q]], {n, 24}]
    (* Clark Kimberling, Feb 13 2014 *)
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*x^2*(1 - x^(2*k - 1))*(1 + x^k)/(1 - x^k), {x, 0, nmax}]]; s += p;, {k, 1, nmax + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    N=66;  q='q + O('q^N );
    S=2+2*ceil(sqrt(N));
    gf= sum(k=1, S,  (-1)^k * ( q^((3*k^2+k)/2) - q^((3*k^2-k)/2) ) ) / prod(k=1,N, 1-q^k );
    /* Joerg Arndt, Oct 08 2012 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)*prod(j=1, k-1, (1-x^(k+j-1))/(1-x^j)))) \\ Seiichi Manyama, Jan 24 2022
    

Formula

a(n) = p(n-1) - p(n-2) - p(n-5) + p(n-7) + ... + (-1)^k*(p(n-(3*k^2-k)/2) - p(n-(3*k^2+k)/2)) + ..., where p() is A000041(). E.g., a(20) = p(19) - p(18) - p(15) + p(13) + p(8) - p(5) = 490 - 385 - 176 + 101 + 22 - 7 = 45. - Vladeta Jovovic, Aug 04 2004
G.f.: ( Sum_{k>=1} (-1)^k * ( x^((3*k^2+k)/2) - x^((3*k^2-k)/2) ) ) / Product_{k>=1} (1-x^k). - Vladeta Jovovic, Aug 05 2004
a(n) ~ exp(Pi*sqrt(2*n/3))*Pi / (48*sqrt(2)*n^(3/2)) ~ p(n) * Pi / (4*sqrt(6*n)), where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 06 2016
G.f.: Sum_{k>=1} x^(2*k-1) * Product_{j=1..k-1} (1-x^(k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022

A006141 Number of integer partitions of n whose smallest part is equal to the number of parts.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 25, 29, 33, 38, 42, 49, 54, 62, 69, 78, 87, 99, 109, 123, 137, 154, 170, 191, 211, 236, 261, 290, 320, 357, 392, 435, 479, 530, 582, 644, 706, 779, 854, 940, 1029, 1133, 1237, 1358, 1485
Offset: 1

Views

Author

Keywords

Comments

Or, number of partitions of n in which number of largest parts is equal to the largest part.
a(n) is the number of partitions of n-1 without parts that differ by less than 2 and which have no parts less than three. [MacMahon]
There are two conflicting choices for the offset in this sequence. For the definition given here the offset is 1, and that is what we shall adopt. On the other hand, if one arrives at this sequence via the Rogers-Ramanujan identities (see the next comment), the natural offset is 0.
Related to Rogers-Ramanujan identities: Let G[1](q) and G[2](q) be the generating functions for the two Rogers-Ramanujan identities of A003114 and A003106, starting with the constant term 1. The g.f. for the present sequence is G[3](q) = (G[1](q) - G[2](q))/q = 1+q^3+q^4+q^5+q^6+q^7+2*q^8+2*q^9+3*q^10+.... - Joerg Arndt, Oct 08 2012; N. J. A. Sloane, Nov 18 2015
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[3](x). - N. J. A. Sloane, Nov 22 2015
From Wolfdieter Lang, Oct 31 2016: (Start)
From Hardy (H) p. 94, eq. (6.12.1) and Hardy-Wright (H-W), p. 293, eq. (19.14.3) for H_2(a,x) - H_1(a,x) = a*H_1(a*x,x) one finds from the result for H_1(a,x) (in (H) on top on p. 95), after putting a=x, the o.g.f. of a(n) = A003114(n) - A003106(n), n >= 0, with a(0) = 0 as Sum_{m>=0} x^((m+1)^2) / Product_{j=1..m} (1 - x^j). The m=0 term is 1*x^1. See the formula given by Joerg Arndt, Jan 29 2011.
This formula has a combinatorial interpretation (found similar to the one given in (H) section 6.0, pp. 91-92 or (H-W) pp. 290-291): a(n) is the number of partitions of n with parts differing by at least 2 and part 1 present. See the example for a(15) below. (End)
The Heinz numbers of these integer partitions are given by A324522. - Gus Wiseman, Mar 09 2019

Examples

			G.f. = x + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 3*x^12 + ...
a(15) = 5 because the partitions of 15 where the smallest part equals the number of parts are
3 + 6 + 6,
3 + 5 + 7,
3 + 4 + 8,
3 + 3 + 9, and
2 + 13.
- _Joerg Arndt_, Oct 08 2012
a(15) = 5 because the partitions of 15 with parts differing by at least 2 and part 1 present are: [14,1] obtained from the partition of 11 with one part, [11], added to the first part of the special partition [3,1] of 4 and  [11,3,1], [10,4,1], [9,5,1], [8,6,1] from adding all partition of 15 - 9 = 6 with one part, [6], and those with two parts, [5,1], [4,1], [3,3], to the special partition [5,3,1] of 9. - _Wolfdieter Lang_, Oct 31 2016
a(15) = 5 because the partitions of 14 with parts >= 3 and parts differing by at least 2 are [14], [11,3], [10,4], [9,5] and [8,6]. See the second [MacMahon] comment. This follows from the g.f. G[3](q) given in Andrews - Baxter, eq. (5.1) for i=3, (using summation index  m) and  m*(m+2) = 3 + 5 + ... + (2*m+1). - _Wolfdieter Lang_, Nov 02 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(8) = 1 through a(15) = 5 integer partitions:
  (6,2)  (7,2)    (8,2)    (9,2)    (10,2)   (11,2)   (12,2)   (13,2)
         (3,3,3)  (4,3,3)  (4,4,3)  (5,4,3)  (5,5,3)  (6,5,3)  (6,6,3)
                           (5,3,3)  (6,3,3)  (6,4,3)  (7,4,3)  (7,5,3)
                                             (7,3,3)  (8,3,3)  (8,4,3)
                                                               (9,3,3)
(End)
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 92-95.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 292-294.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 45, Section 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
A003106 counts partitions with minimum > length.
A003114 counts partitions with minimum >= length.
A026794 counts partitions by minimum.
A039899 counts partitions with minimum < length.
A039900 counts partitions with minimum <= length.
A239950 counts partitions with minimum equal to number of distinct parts.
Sequences related to balance:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 ranks balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i,i)))))
        end:
    a:= n-> add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 08 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n<0, 0, If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]]; a[n_] := Sum[b[n-j^2, j-1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Min[#]==Length[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(j=1, k-1, 1 - x^j, 1 + O(x ^ (n - k^2 + 1) ))), n))} /* Michael Somos, Jan 22 2008 */

Formula

G.f.: Sum_{m>=1} (x^(m^2)-x^(m*(m+1))) / Product_{i=1..m} (1-x^i) .
G.f.: Sum_{n>=1} x^(n^2)/Product_{k=1..n-1} (1-x^k). - Joerg Arndt, Jan 29 2011
a(n) = A003114(n) - A003106(n) = A039900(n) - A039899(n), (offset 1). - Vladeta Jovovic, Jul 17 2004
Plouffe in his 1992 dissertation conjectured that this has g.f. = (1+z+z^4+2*z^5-z^3-z^8+3*z^10-z^7+z^9)/(1+z-z^4-2*z^3-z^8+z^10), but Michael Somos pointed out on Jan 22 2008 that this is false.
Expansion of ( f(-x^2, -x^3) - f(-x, -x^4) ) / f(-x) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 22 2007
a(n) ~ sqrt(1/sqrt(5) - 2/5) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 01 2016

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
Better description from Naohiro Nomoto, Feb 06 2002
Name shortened by Gus Wiseman, Apr 07 2021 (balanced partitions are A047993).

A064174 Number of partitions of n with nonnegative rank.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 42, 56, 73, 96, 125, 161, 207, 265, 336, 426, 536, 672, 840, 1046, 1296, 1603, 1975, 2425, 2970, 3628, 4417, 5367, 6503, 7861, 9482, 11412, 13702, 16423, 19642, 23447, 27938, 33231, 39453, 46767, 55342, 65386, 77135
Offset: 1

Views

Author

Vladeta Jovovic, Sep 20 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
This sequence (up to proof) equals "partitions of 2n with even number of parts, ending in 1, with max descent of 1, where the number of odd parts in odd places equals the number of odd parts in even places. (See link and 2nd Mathematica line.) - Wouter Meeussen, Mar 29 2013
Number of partitions p of n such that max(max(p), number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n with maximum part greater than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324521. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(311) (51) (61) (62)
(321) (322) (71)
(411) (331) (332)
(421) (422)
(511) (431)
(4111) (521)
(611)
(4211)
(5111)
Also the number of integer partitions of n with maximum part less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324562. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			a(20) = p(19) - p(15) + p(8) = 490 - 176 + 22 = 336.
		

Crossrefs

Programs

  • Maple
    f:= n -> add((-1)^(k+1)*combinat:-numbpart(n-(3*k^2-k)/2),k=1..floor((1+sqrt(24*n+1))/6)):
    map(f, [$1..100]); # Robert Israel, Aug 03 2015
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] >= Length[q]], {n, 16}]
    (* also *)
    Table[Count[IntegerPartitions[2n],q_/;Last[q]===1 && Max[q-PadRight[Rest[q],Length[q]]]<=1 && Count[First/@Partition[q,2],?OddQ]==Count[Last/@Partition[q,2],?OddQ]],{n,16}]
    (* also *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p], Length[p]]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
  • PARI
    {a(n) = my(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = (A000041(n) + A047993(n))/2.
a(n) = p(n-1) - p(n-5) + p(n-12) - ... -(-1)^k*p(n-(3*k^2-k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
A064173(n) + a(n) = A000041(n). - R. J. Mathar, Feb 22 2023
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2). - Seiichi Manyama, May 21 2023

Extensions

Mathematica programs modified by Clark Kimberling, Feb 12 2014

A064173 Number of partitions of n with positive rank.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 80, 106, 136, 178, 225, 291, 366, 466, 583, 735, 912, 1140, 1407, 1743, 2140, 2634, 3214, 3932, 4776, 5807, 7022, 8495, 10225, 12313, 14762, 17696, 21136, 25236, 30030, 35722, 42367, 50216, 59368, 70138, 82665
Offset: 1

Views

Author

Vladeta Jovovic, Sep 19 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
Also number of partitions of n with negative rank. - Omar E. Pol, Mar 05 2012
Column 1 of A208478. - Omar E. Pol, Mar 11 2012
Number of partitions p of n such that max(max(p), number of parts of p) is not a part of p. - Clark Kimberling, Feb 28 2014
The sequence enumerates the semigroup of partitions of positive rank for each number n. The semigroup is a subsemigroup of the monoid of partitions of nonnegative rank under the binary operation "*": Let A be the positive rank partition (a1,...,ak) where ak > k, and let B=(b1,...bj) with bj > j. Then let A*B be the partition (a1b1,...,a1bj,...,akb1,...,akbj), which has akbj > kj, thus having positive rank. For example, the partition (2,3,4) of 9 has rank 1, and its product with itself is (4,6,6,8,8,9,12,12,16) of 81, which has rank 7. A similar situation holds for partitions of negative rank--they are a subsemigroup of the monoid of nonpositive rank partitions. - Richard Locke Peterson, Jul 15 2018

Examples

			a(20) = p(18) - p(13) + p(5) = 385 - 101 + 7 = 291.
From _Gus Wiseman_, Feb 09 2021: (Start)
The a(2) = 1 through a(9) = 13 partitions of positive rank:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (421)  (71)    (81)
                               (511)  (422)   (432)
                                      (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (5211)
                                              (6111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The negative-rank version is also A064173 (A340788).
The case of odd positive rank is A101707 (A340604).
The case of even positive rank is A101708 (A340605).
These partitions are ranked by (A340787).
A063995/A105806 count partitions by rank.
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is a multiple of the greatest part.
A200750 counts partitions whose length and greatest part are coprime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).
- Balance -
A047993 counts balanced partitions (A106529).
A340599 counts alt-balanced factorizations.
A340653 counts balanced factorizations.

Programs

  • Maple
    A064173 := proc(n)
        a := 0 ;
        for p in combinat[partition](n) do
            r := max(op(p))-nops(p) ;
            if r > 0 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A064173(n),n=0..40) ;# Emeric Deutsch, Dec 11 2004
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] > Length[q]], {n, 24}] (* Clark Kimberling, Feb 12 2014 *)
    Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Max[Max[p], Length[p]]]], {n, 20}] (* Clark Kimberling, Feb 28 2014 *)
    P = PartitionsP;
    a[n_] := (P[n] - Sum[-(-1)^k (P[n - (3k^2 - k)/2] - P[n - (3k^2 + k)/2]), {k, 1, Floor[(1 + Sqrt[1 + 24n])/6]}])/2;
    a /@ Range[48] (* Jean-François Alcover, Jan 11 2020, after Wouter Meeussen in A047993 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(k+j-2))/(1-x^j))))) \\ Seiichi Manyama, Jan 25 2022

Formula

a(n) = (A000041(n) - A047993(n))/2.
a(n) = p(n-2) - p(n-7) + p(n-15) - ... - (-1)^k*p(n-(3*k^2+k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Product_{k>=1} (1/(1-q^k)) * Sum_{k>=1} ( (-1)^k * (-q^(3*k^2/2+k/2))) (conjectured). - Thomas Baruchel, May 12 2018
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(k+j-2))/(1-x^j). - Seiichi Manyama, Jan 25 2022
a(n)+A064174(n) = A000041(n). - R. J. Mathar, Feb 22 2023

A340596 Number of co-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be co-balanced if it has exactly A001221(n) factors.

Examples

			The a(n) co-balanced factorizations for n = 12, 24, 36, 72, 120, 144, 180:
  2*6    3*8     4*9     8*9     3*5*8     2*72     4*5*9
  3*4    4*6     6*6     2*36    4*5*6     3*48     5*6*6
         2*12    2*18    3*24    2*2*30    4*36     2*2*45
                 3*12    4*18    2*3*20    6*24     2*3*30
                         6*12    2*4*15    8*18     2*5*18
                                 2*5*12    9*16     2*6*15
                                 2*6*10    12*12    2*9*10
                                 3*4*10             3*3*20
                                                    3*4*15
                                                    3*5*12
                                                    3*6*10
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The version for unlabeled multiset partitions is A319616.
The alt-balanced version is A340599.
The balanced version is A340653.
The cross-balanced version is A340654.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[#]==PrimeNu[n]&]],{n,100}]
  • PARI
    A340596(n, m=n, om=omega(n)) = if(1==n,(0==om), sumdiv(n, d, if((d>1)&&(d<=m), A340596(n/d, d, om-1)))); \\ Antti Karttunen, Jun 10 2024

Extensions

Data section extended up to a(120) by Antti Karttunen, Jun 10 2024

A039900 Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 9, 13, 19, 27, 38, 52, 71, 95, 127, 167, 220, 285, 370, 474, 607, 770, 976, 1226, 1540, 1920, 2391, 2960, 3660, 4501, 5529, 6760, 8254, 10038, 12190, 14750, 17825, 21470, 25825, 30975, 37101, 44322, 52879, 62937, 74811, 88733, 105110, 124261
Offset: 0

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: o < 0 + 1 + 4 (OMZAAp).
Number of partitions of n such that (greatest part) >= (multiplicity of greatest part), for n >= 1. For example, a(6) counts these 9 partitions: 6, 51, 42, 411, 33, 321, 3111, 22111, 21111. See the Mathematica program at A240057 for the sequence as a count of these partitions, along with counts of related partitions. - Clark Kimberling, Apr 02 2014
The Heinz numbers of these integer partitions are given by A324561. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n whose minimum part is less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324560. For example, the a(1) = 1 through a(7) = 13 integer partitions are:
(1) (11) (21) (22) (32) (42) (52)
(111) (31) (41) (51) (61)
(211) (221) (222) (322)
(1111) (311) (321) (331)
(2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)

Examples

			From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(7) = 13 integer partitions with at least one part equal to 0, 1, or 4 modulo 5:
  (1)  (11)  (21)   (4)     (5)      (6)       (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (321)     (331)
                            (2111)   (411)     (421)
                            (11111)  (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
          `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i,
          `if`(irem(i, 5) in {2, 3}, t, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min[p] <= Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{2, 3}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^k*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^k * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000041(n) - A003106(n). - Vaclav Kotesovec, Oct 20 2024

A340599 Number of factorizations of n into factors > 1 with length and greatest factor equal.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2021

Keywords

Comments

I call these alt-balanced factorizations. Balanced factorizations are A340653. - Gus Wiseman, Jan 20 2021

Examples

			The alt-balanced factorizations for n = 192, 1728, 3456, 9216:
  3*4*4*4       2*2*2*6*6*6   2*2*4*6*6*6         4*4*4*4*6*6
  2*2*2*2*2*6   2*2*3*4*6*6   2*3*4*4*6*6         2*2*2*2*2*6*6*8
                2*3*3*4*4*6   3*3*4*4*4*6         2*2*2*2*3*3*8*8
                              2*2*2*2*3*3*3*8     2*2*2*2*3*4*6*8
                              2*2*2*2*2*2*2*3*9   2*2*2*3*3*4*4*8
                                                  2*2*2*2*2*2*2*8*9
                                                  2*2*2*2*2*2*4*4*9
		

Crossrefs

The co-balanced version is A340596.
Positions of nonzero terms are A340597.
The case of powers of two is A340611.
Taking maximum Omega instead of maximum factor gives A340653.
The cross-balanced version is A340654.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340598 counts balanced set partitions.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[#]==Max[#]&]],{n,100}]
  • PARI
    A340599(n, m=n, e=0, mf=1) = if(1==n, mf==e, sumdiv(n, d, if((d>1)&&(d<=m), A340599(n/d, d, 1+e, max(d, mf))))); \\ Antti Karttunen, Jun 19 2024

Extensions

Data section extended up to a(120) and the secondary offset added by Antti Karttunen, Jun 19 2024

A340654 Number of cross-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be cross-balanced if either (1) it is empty or (2) the maximum image of A001222 over the factors is A001221(n).

Examples

			The cross-balanced factorizations for n = 12, 24, 36, 72, 144, 240:
  2*6   4*6     4*9     2*4*9     4*4*9       8*30
  3*4   2*2*6   6*6     2*6*6     4*6*6       12*20
        2*3*4   2*2*9   3*4*6     2*2*4*9     5*6*8
                2*3*6   2*2*2*9   2*2*6*6     2*4*30
                3*3*4   2*2*3*6   2*3*4*6     2*6*20
                        2*3*3*4   3*3*4*4     2*8*15
                                  2*2*2*2*9   3*4*20
                                  2*2*2*3*6   3*8*10
                                  2*2*3*3*4   4*5*12
                                              2*10*12
                                              2*3*5*8
                                              2*2*2*30
                                              2*2*3*20
                                              2*2*5*12
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340651.
The balanced version is A340653.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A320655 counts factorizations into semiprimes.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340656 have no twice-balanced factorizations.
- A340657 have a twice-balanced factorization.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,100}]
  • PARI
    A340654(n, m=n, om=omega(n),mbo=0) = if(1==n,(mbo==om), sumdiv(n, d, if((d>1)&&(d<=m), A340654(n/d, d, om, max(mbo,bigomega(d)))))); \\ Antti Karttunen, Jun 19 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Jun 19 2024

A117144 Partitions of n in which each part k occurs at least k times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 9, 10, 12, 15, 16, 19, 21, 25, 28, 32, 34, 41, 46, 51, 55, 64, 70, 79, 86, 97, 106, 119, 129, 146, 159, 175, 190, 214, 232, 256, 277, 306, 334, 367, 394, 434, 472, 515, 556, 607, 654, 714, 770, 836, 901, 978, 1048, 1140, 1226, 1322
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324525. - Gus Wiseman, Mar 09 2019

Examples

			a(9)=5 because we have [3,3,3], [2,2,2,2,1], [2,2,2,1,1,1], [2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(9) = 5 integer partitions:
  1  11  111  22    221    222     2221     2222      333
              1111  11111  2211    22111    22211     22221
                           111111  1111111  221111    222111
                                            11111111  2211111
                                                      111111111
(End)
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^k+x^(k^2))/(1-x^k),k=1..100): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..66);
    # second Maple program:
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1), j=i..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 28 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1], {j, i, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>=i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Mar 09 2019 *)
    nmax = 100; CoefficientList[Series[Product[(1-x^k+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 28 2024 *)

Formula

G.f.: Product_{k>=1} (1-x^k+x^(k^2))/(1-x^k).

A340655 Number of twice-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 2, 0, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The twice-balanced factorizations for n = 12, 120, 360, 480, 900, 2520:
  2*6   3*5*8    5*8*9     2*8*30    2*6*75    2*2*7*90
  3*4   2*2*30   2*4*45    3*8*20    2*9*50    2*3*5*84
        2*3*20   2*6*30    4*4*30    3*4*75    2*3*7*60
        2*5*12   2*9*20    4*6*20    3*6*50    2*5*7*36
                 3*4*30    4*8*15    4*5*45    3*3*5*56
                 3*6*20    5*8*12    5*6*30    3*3*7*40
                 3*8*15    6*8*10    5*9*20    3*5*7*24
                 4*5*18    2*12*20   2*10*45   2*2*2*315
                 5*6*12    4*10*12   2*15*30   2*2*3*210
                 2*10*18             2*18*25   2*2*5*126
                 2*12*15             3*10*30   2*3*3*140
                 3*10*12             3*12*25
                                     3*15*20
                                     5*10*18
                                     5*12*15
		

Crossrefs

The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340652.
The balanced version is A340653.
The cross-balanced version is A340654.
Positions of zeros are A340656.
Positions of nonzero terms are A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||Length[#]==PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,30}]
Showing 1-10 of 18 results. Next