cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A191218 Odd numbers n such that sigma(n) is congruent to 2 modulo 4.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 45, 53, 61, 73, 89, 97, 101, 109, 113, 117, 137, 149, 153, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 261, 269, 277, 281, 293, 313, 317, 325, 333, 337, 349, 353, 369, 373, 389, 397, 401, 405, 409, 421, 425, 433, 449, 457, 461, 477
Offset: 1

Views

Author

Luis H. Gallardo, May 26 2011

Keywords

Comments

Exactly the numbers of the form p^{4k+1}*m^2 with p a prime congruent to 1 modulo 4 and m a positive integer coprime with p. The odd perfect numbers are all of this form.
See A228058 for the terms where m > 1. - Antti Karttunen, Apr 22 2019

Examples

			For n=3 one has a(3)=17 since sigma(17) = 18 = 4*4 +2 is congruent to 2 modulo 4
		

Crossrefs

Subsequence of A191217.
Cf. A228058, A324898 (subsequences).

Programs

  • Maple
    with(numtheory): genodd := proc(b) local n,s,d; for n from 1 to b by 2 do s := sigma(n);
    if modp(s,4)=2 then print(n); fi; od; end;
  • Mathematica
    Select[Range[1,501,2],Mod[DivisorSigma[1,#],4]==2&] (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    forstep(n=1,10^3,2,if(2==(sigma(n)%4),print1(n,", "))) \\ Joerg Arndt, May 27 2011
    
  • PARI
    list(lim)=my(v=List()); forstep(e=1,logint(lim\=1,5),4, forprimestep(p=5,sqrtnint(lim,e),4, my(pe=p^e); forstep(m=1,sqrtint(lim\pe),2, if(m%p, listput(v,pe*m^2))))); Set(v) \\ Charles R Greathouse IV, Feb 16 2022

A325311 Odd abundant numbers k for which sigma(k) == 3 (mod 4).

Original entry on oeis.org

11025, 99225, 245025, 540225, 893025, 1334025, 2205225, 3980025, 4862025, 5832225, 6890625, 8037225, 8555625, 9828225, 10595025, 10989225, 12006225, 14402025, 19847025, 20385225, 24354225, 26163225, 26471025, 29648025, 31979025, 35820225, 38378025, 43758225, 46580625, 49491225, 50339025, 52490025, 55577025, 57836025, 60140025
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2019

Keywords

Comments

These are all squares. Square roots are in A325312.

Crossrefs

Cf. A000203, A324647, A325312 (square roots).
Intersection of A005231 and A324899.
Subsequence of A156942.

Programs

  • Mathematica
    Select[Range[1, 7755, 2]^2, Mod[(s = DivisorSigma[1, #]), 4] == 3 && s > 2*# &] (* Amiram Eldar, Apr 05 2024 *)
  • PARI
    isA325311(n) = (n%2 && (3==sigma(n)%4) && sigma(n)>(2*n));

Formula

a(n) = A325312(n)^2. - Amiram Eldar, Apr 05 2024

A324652 Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 36, 40, 48, 56, 80, 88, 96, 100, 104, 112, 160, 176, 192, 196, 200, 204, 208, 220, 224, 260, 264, 272, 304, 320, 336, 352, 368, 384, 392, 416, 448, 464, 496, 544, 550, 580, 608, 640, 648, 650, 672, 704, 736, 768, 784, 832, 896, 928, 992, 1032, 1040, 1044, 1056, 1060, 1068, 1088, 1104, 1120, 1184, 1216
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324658, fixed points of A324659.
Intersection with A324649 gives A324643.
Intersection with A324726 gives A000396.
In the range 1..2^32 there are only 22 odd terms. See A324647.

Crossrefs

Some subsequences: A000396, A324643, A324647 (the odd terms).

Programs

  • Mathematica
    Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", ")))

A324727 Odd numbers such that 2n is equal to A318466(n), bitor(2*n,sigma(n)), where bitor is A003986.

Original entry on oeis.org

3, 7, 15, 21, 31, 55, 57, 63, 93, 105, 111, 127, 171, 189, 201, 213, 215, 217, 231, 237, 249, 253, 255, 315, 351, 357, 363, 369, 381, 393, 447, 465, 469, 473, 483, 489, 497, 501, 511, 651, 705, 747, 759, 789, 813, 831, 833, 879, 889, 895, 917, 959, 987, 989, 1001, 1015, 1023, 1155, 1365, 1377, 1407, 1467, 1491, 1503, 1505, 1515, 1533, 1595
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 2000, 2], 2*# == BitOr[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n%2)&&((2*n)==bitor(2*n,sigma(n))),print1(n,", ")));

A324718 Odd numbers n for which bitand(2n,sigma(n)) = 2*bitand(n,sigma(n)-n), where bitand is bitwise-AND, A004198.

Original entry on oeis.org

1, 5, 9, 17, 37, 41, 73, 137, 149, 153, 257, 261, 277, 293, 337, 405, 521, 529, 549, 577, 593, 641, 661, 673, 677, 1025, 1033, 1061, 1093, 1097, 1109, 1153, 1193, 1289, 1297, 1301, 1321, 1361, 2053, 2069, 2081, 2089, 2097, 2113, 2129, 2209, 2213, 2225, 2309, 2341, 2377, 2389, 2593, 2633, 2689, 2693, 2729, 2825, 4129, 4133, 4177, 4229
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Odd numbers n for which 2*A318458(n) = A318468(n). If there are no common terms with A324719, then there are no odd perfect numbers.
This is not a subsequence of A191218, because terms 1, 9, 529, 2209, 10609, 77841, 83521, 263169, 279841, 330625, 528529, ... are not present in A191218.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^4, 2], Block[{s = DivisorSigma[1, #]}, BitAnd[2*#, s] == 2* BitAnd[#, s-#]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n%2) && (bitand(2*n,sigma(n)) == 2*bitand(n,sigma(n)-n)),print1(n, ", ")));

A386425 Odd composites k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

153, 801, 1773, 3725, 4689, 4753, 5013, 6957, 8577, 8725, 9549, 9873, 11493, 13437, 14409, 15381, 18621, 19269, 21213, 21537, 23481, 25101, 26073, 26225, 28989, 29161, 29313, 29961, 32229, 33849, 34173, 36117, 38061, 39033, 40653, 42597, 43893, 47457, 47781, 48725, 48753, 51669, 52317, 54261, 56953, 57177, 57501
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

By definition, the sequence contains all odd perfect numbers, and also includes any hypothetical odd triperfect number that is not a multiple of 3 (see A005820 and A347391), and similarly, any odd term of A046060 that is not a multiple of 5, etc. If there are no squares in this sequence (see conjecture in A386424), then the latter categories of numbers certainly do not exist, and this is then a subsequence of A228058.
The first nondeficient term is a(32315) = 81022725. See A386426.

Crossrefs

Intersection of A071904 and A386424.
Nonsquare terms form a subsequence of A228058.
Cf. A000203, A003557, A057521, A386426 (nondeficient terms).
Cf. also A324647, A349749.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[9,57501,2],!PrimeQ[#]&&a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386425(n) = ((n>1) && (n%2) && !isprime(n) && (A057521(sigma(n))==A057521(n)));

Formula

{k | k is odd composite and A003557(A000203(k)) = A003557(k)}.

A324722 Numbers k such that A324658(A156552(k)) is zero.

Original entry on oeis.org

9, 21, 25, 35, 49, 55, 77, 95, 121, 125, 133, 143, 169, 185, 203, 209, 221, 265, 289, 299, 301, 319, 323, 343, 361, 371, 377, 413, 427, 437, 445, 451, 473, 481, 493, 497, 511, 527, 529, 531, 539, 553, 559, 583, 589, 605, 611, 623, 629, 667, 679, 689, 703, 707, 737, 763, 767, 779, 791, 793, 799, 805, 817, 841, 845, 847, 851, 869, 871, 899, 901
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Comments

First even term is A005940(1+A324647(1)) = A005940(1+1116225) = 1912898. - Typo corrected by Antti Karttunen, Jul 21 2021

Crossrefs

Positions of zeros in A324716.

Programs

A324898 Odd numbers k such that sigma(k) is congruent to 2 modulo 4 and k = A318458(k), where A318458(k) is bitwise-AND of k and sigma(k)-k.

Original entry on oeis.org

236925, 3847725, 51122925, 69468525, 151141725, 154669725, 269748225, 344211525, 415565325, 445817925, 551569725, 1111904325, 1112565825, 1113756525, 1175717025, 1400045625, 1631666925, 1695170925, 1820873925, 1915847325, 1946981925, 2179080225, 2321121825, 2453690925, 2460041325, 2491740225, 3223500525, 3493517445, 3775103325
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 29 terms factored:
236925 = 3^6 * 5^2 * 13,
3847725 = 3^2 * 5^2 * 7^2 * 349,
51122925 = 3^2 * 5^2 * 7^2 * 4637,
69468525 = 3^2 * 5^2 * 7^2 * 6301,
151141725 = 3^2 * 5^2 * 7^2 * 13709,
154669725 = 3^2 * 5^2 * 7^2 * 14029,
269748225 = 3^6 * 5^2 * 19^2 * 41,
344211525 = 3^4 * 5^2 * 7^2 * 3469,
415565325 = 3^2 * 5^2 * 7^2 * 37693,
445817925 = 3^4 * 5^2 * 7^2 * 4493,
551569725 = 3^2 * 5^2 * 7^4 * 1021,
1111904325 = 3^2 * 5^2 * 7^2 * 100853,
1112565825 = 3^2 * 5^2 * 7^2 * 100913,
1113756525 = 3^2 * 5^2 * 7^2 * 101021,
1175717025 = 3^4 * 5^2 * 7^2 * 17^2 * 41,
1400045625 = 3^2 * 5^4 * 11^4 * 17,
1631666925 = 3^2 * 5^2 * 7^2 * 147997,
1695170925 = 3^2 * 5^2 * 7^2 * 153757,
1820873925 = 3^4 * 5^2 * 13 * 263^2, [Here the unitary prime is not the largest]
1915847325 = 3^2 * 5^2 * 7^2 * 173773,
1946981925 = 3^2 * 5^2 * 7^2 * 176597,
2179080225 = 3^4 * 5^2 * 7^2 * 21961,
2321121825 = 3^4 * 5^2 * 11^2 * 9473,
2453690925 = 3^2 * 5^2 * 7^2 * 222557,
2460041325 = 3^2 * 5^2 * 7^2 * 223133,
2491740225 = 3^6 * 5^2 * 13^2 * 809,
3223500525 = 3^2 * 5^2 * 7^2 * 292381,
3493517445 = 3^6 * 5^1 * 11^2 * 89^2, [Here the unitary prime is not the largest]
3775103325 = 3^2 * 5^2 * 7^2 * 342413.
Subsequence of A228058 provided this sequence does not contain any prime powers. - Antti Karttunen, Jun 17 2019
Sequence contains no prime powers up to 10^20. I believe any prime powers must be of the form (4k+1)^(4e+1), in which case I have verified this up to 10^50. - Charles R Greathouse IV, Dec 08 2021

Crossrefs

Intersection of A191218 and A324897, also intersection of A191218 and A324649.

Programs

  • Mathematica
    Select[Range[10^5, 10^8, 2], And[Mod[#2, 4] == 2, BitAnd[#1, #2 - #1] == #1] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Jun 22 2019 *)
  • PARI
    for(n=1, oo, if((n%2)&&2==((t=sigma(n))%4)&&(bitand(n, t-n)==n), print1(n,", ")));

A324897 Odd numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.

Original entry on oeis.org

7425, 76545, 92565, 236925, 831105, 954765, 1401345, 2011905, 2048445, 2129985, 2253825, 2445345, 2621745, 2974725, 3283245, 3847725, 5709825, 6447105, 8422785, 8503425, 8945685, 10781505, 12488385, 13470345, 14322945, 15213825, 15340545, 19470465, 19502145, 20075265, 22749825, 25740225, 25756605, 26215245, 27009045
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 16 terms factored:
7425 = 3^3 * 5^2 * 11,
76545 = 3^7 * 5 * 7,
92565 = 3^2 * 5 * 11^2 * 17,
236925 = 3^6 * 5^2 * 13,
831105 = 3^2 * 5 * 11 * 23 * 73,
954765 = 3^2 * 5 * 7^2 * 433,
1401345 = 3^2 * 5 * 11 * 19 * 149,
2011905 = 3^3 * 5 * 7 * 2129,
2048445 = 3^2 * 5 * 7^2 * 929,
2129985 = 3^2 * 5 * 11 * 13 * 331,
2253825 = 3^5 * 5^2 * 7 * 53,
2445345 = 3^2 * 5 * 7^2 * 1109,
2621745 = 3^2 * 5 * 7^2 * 29 * 41,
2974725 = 3^4 * 5^2 * 13 * 113,
3283245 = 3^2 * 5 * 7^2 * 1489,
3847725 = 3^2 * 5^2 * 7^2 * 349.

Crossrefs

Subsequence of A324649.
Cf. A318458, A324647, A324898 (a subsequence).

Programs

Showing 1-10 of 12 results. Next