cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A047967 Number of partitions of n with some part repeated.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 32, 44, 62, 83, 113, 149, 199, 259, 339, 436, 563, 716, 913, 1151, 1453, 1816, 2271, 2818, 3496, 4309, 5308, 6502, 7959, 9695, 11798, 14298, 17309, 20877, 25151, 30203, 36225, 43323, 51748, 61651, 73359, 87086, 103254, 122164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with at least one even part. - Vladeta Jovovic, Sep 10 2003. Example: a(5)=4 because we have [4,1], [3,2], [2,2,1] and [2,1,1,1] ([5], [3,1,1] and [1,1,1,1,1] do not qualify). - Emeric Deutsch, Mar 30 2006
Also number of partitions of n (where it is assumed that the least part is 0) such that at least one difference is at least two. Example: a(5)=4 because we have [5,0], [4,1,0], [3,2,0] and [3,1,1,0] ([2,2,1,0], [2,1,1,1,0] and [1,1,1,1,1,0] do not qualify). - Emeric Deutsch, Mar 30 2006
The Heinz numbers of these partitions (with some part repeated) are given by A013929. Equivalent to Vladeta Jovovic's comment, a(n) is also the number of integer partitions whose product of parts is even. The Heinz numbers of these latter partitions are given by A324929. - Gus Wiseman, Mar 23 2019

Examples

			a(5) = 4 because we have [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1] ([5], [4,1] and [3,2] do not qualify).
		

Crossrefs

Column k=1 of A320264.

Programs

  • Maple
    g:=sum(x^(2*k)*product(1+x^j,j=k+1..70)/product(1-x^j,j=1..k),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..44); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    Table[PartitionsP[n]-PartitionsQ[n],{n,0,50}] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    x='x+O('x^66); concat([0,0], Vec(1/eta(x)-eta(x^2)/eta(x))) \\ Joerg Arndt, Jun 21 2011

Formula

a(n) = A000041(n) - A000009(n).
G.f.: Sum_{k>=1} x^(2*k)*(Product_{j>=k+1} (1+x^j)) / Product_{j=1..k} (1-x^j) = Sum_{k>=1} x^(2*k)/(Product_{j=1..2*k} (1-x^j)*Product_{j>=k} (1-x^(2*j+1))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/P(x) - P(x^2)/P(x) where P(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011
a(n) = p(n-2)+p(n-4)-p(n-10)-p(n-14)+...+(-1^(j-1))*p(n-j*(3*j-1)) + (-1^(j-1))*p(n-j*(3*j+1))+..., where p(n) = A000041(n). - Gregory L. Simay, Aug 28 2023

A325700 Numbers with as many distinct even as distinct odd prime indices.

Original entry on oeis.org

1, 6, 12, 14, 15, 18, 24, 26, 28, 33, 35, 36, 38, 45, 48, 51, 52, 54, 56, 58, 65, 69, 72, 74, 75, 76, 77, 86, 93, 95, 96, 98, 99, 104, 106, 108, 112, 116, 119, 122, 123, 135, 141, 142, 143, 144, 145, 148, 152, 153, 158, 161, 162, 172, 175, 177, 178, 185, 192
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

These are the Heinz numbers of the integer partitions counted by A241638.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    6: {1,2}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   33: {2,5}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   45: {2,2,3}
   48: {1,1,1,1,2}
   51: {2,7}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   58: {1,10}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],0==Total[(-1)^PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

A366322 Heinz numbers of integer partitions containing at least one odd part. Numbers divisible by at least one prime of odd index.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    5: {3}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   11: {5}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   24: {1,1,1,2}
		

Crossrefs

The complement is A066207, counted by A035363.
For all odd parts we have A066208, counted by A000009.
Partitions of this type are counted by A086543.
For even instead of odd we have A324929, counted by A047967.
A031368 lists primes of odd index.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    Select[Range[100],Or@@OddQ/@PrimePi/@First/@FactorInteger[#]&]

Formula

A257991(a(n)) > 0.

A324967 Number of distinct even prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 0, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If x and y are coprime then a(x*y) = a(x) + a(y). - Robert Israel, Mar 24 2019

Examples

			180180 has prime indices {1,1,2,2,3,4,5,6}, so a(180180) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(type,map(numtheory:-pi,numtheory:-factorset(n)),even)) end proc:
    map(f, [$1..100]); # Robert Israel, Mar 24 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{?(EvenQ[PrimePi[#]]&),}],{n,100}]
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, #f, !(primepi(f[k]) % 2)); \\ Michel Marcus, Mar 22 2019

Formula

a(n) = A001221(n) - A324966(n). - Robert Israel, Mar 24 2019
G.f.: Sum_{k>=1} x^prime(2*k) / (1 - x^prime(2*k)). - Ilya Gutkovskiy, Feb 12 2020
Additive with a(p^e) = 1 if primepi(p) is even and 0 otherwise. - Amiram Eldar, Oct 06 2023

A325699 Number of distinct even prime indices of n minus the number of distinct odd prime indices of n.

Original entry on oeis.org

0, -1, 1, -1, -1, 0, 1, -1, 1, -2, -1, 0, 1, 0, 0, -1, -1, 0, 1, -2, 2, -2, -1, 0, -1, 0, 1, 0, 1, -1, -1, -1, 0, -2, 0, 0, 1, 0, 2, -2, -1, 1, 1, -2, 0, -2, -1, 0, 1, -2, 0, 0, 1, 0, -2, 0, 2, 0, -1, -1, 1, -2, 2, -1, 0, -1, -1, -2, 0, -1, 1, 0, -1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

  • Mathematica
    Table[Total[(-1)^PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]

Formula

G.f.: Sum_{k>=1} (-1)^k * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 12 2020
Additive with a(p^e) = (-1)^primepi(p). - Amiram Eldar, Jun 17 2024

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

Original entry on oeis.org

4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   46: {1,9}
   48: {1,1,1,1,2}
   52: {1,1,6}
   55: {3,5}
   62: {1,11}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A182616, even bisection of A086543.
Not requiring at least one odd part gives A300061.
Allowing partitions of odd numbers gives A366322.
A031368 lists primes of odd index.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]

A344908 Sum of the distinct odd-indexed prime divisors, p_{2k-1}, of n.

Original entry on oeis.org

0, 2, 0, 2, 5, 2, 0, 2, 0, 7, 11, 2, 0, 2, 5, 2, 17, 2, 0, 7, 0, 13, 23, 2, 5, 2, 0, 2, 0, 7, 31, 2, 11, 19, 5, 2, 0, 2, 0, 7, 41, 2, 0, 13, 5, 25, 47, 2, 0, 7, 17, 2, 0, 2, 16, 2, 0, 2, 59, 7, 0, 33, 0, 2, 5, 13, 67, 19, 23, 7, 0, 2, 73, 2, 5, 2, 11, 2, 0, 7, 0, 43, 83, 2, 22
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 02 2021

Keywords

Comments

a(m) = 0 for m in A066207. - Michel Marcus, Jun 12 2021
Inverse Möbius transform of n * c(n) * (pi(n) mod 2), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 23 2024

Examples

			a(6) = Sum_{p|6} p * (pi(p) mod 2) = 2*(pi(2) mod 2) + 3*(pi(3) mod 2) = 2*1 + 3*0 = 2.
		

Crossrefs

Cf. A344931 (sum of distinct even-indexed prime divisors).

Programs

  • Mathematica
    Table[Sum[k*Mod[PrimePi[k], 2] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (primepi(f[k,1]) % 2, f[k,1])); \\ Michel Marcus, Jun 12 2021

Formula

a(n) = Sum_{p|n} p * (pi(p) mod 2).
G.f.: Sum_{k>=1} prime(2*k-1) * x^prime(2*k-1) / (1 - x^prime(2*k-1)). - Ilya Gutkovskiy, Oct 24 2023
a(n) = Sum_{d|n} d * c(d) * (pi(d) mod 2), where c = A010051. - Wesley Ivan Hurt, Jun 23 2024

A344931 Sum of the distinct even-indexed prime divisors, p_{2k}, of n.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 0, 3, 13, 7, 3, 0, 0, 3, 19, 0, 10, 0, 0, 3, 0, 13, 3, 7, 29, 3, 0, 0, 3, 0, 7, 3, 37, 19, 16, 0, 0, 10, 43, 0, 3, 0, 0, 3, 7, 0, 3, 13, 53, 3, 0, 7, 22, 29, 0, 3, 61, 0, 10, 0, 13, 3, 0, 0, 3, 7, 71, 3, 0, 37, 3, 19, 7, 16, 79, 0, 3, 0, 0, 10, 0, 43, 32
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 02 2021

Keywords

Comments

Inverse Möbius transform of n * c(n) * ((pi(n)+1) mod 2), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 23 2024

Examples

			a(12) = Sum_{p|12} p * ((pi(p)+1) mod 2) = 2*0 + 3*1 = 3.
		

Crossrefs

Cf. A000720 (pi), A008472 (sopf), A005074, A324966.
Cf. A344908 (sum of distinct odd-indexed prime divisors).

Programs

  • Mathematica
    Table[Sum[k*Mod[PrimePi[k] + 1, 2] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (!(primepi(f[k,1]) % 2), f[k,1])); \\ Michel Marcus, Jun 12 2021

Formula

a(n) = Sum_{p|n} p * ((pi(p)+1) mod 2).
G.f.: Sum_{k>=1} prime(2*k) * x^prime(2*k) / (1 - x^prime(2*k)). - Ilya Gutkovskiy, Oct 24 2023
a(n) = Sum_{d|n} d * c(d) * ((pi(d)+1) mod 2), where c = A010051. - Wesley Ivan Hurt, Jun 23 2024

A345374 Number of unitary prime divisors of n whose prime index is odd.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 1, 0, 2, 0, 0, 1, 2, 1, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 && OddQ[PrimePi[p]], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, if(f[i,2] == 1 && primepi(f[i,1])%2, 1, 0));} \\ Amiram Eldar, Oct 06 2023

Formula

a(n) = Sum_{p|n, p prime} (pi(p) mod 2) * floor(1/gcd(p,n/p)).
From Amiram Eldar, Oct 06 2023: (Start)
a(n) = A056169(n) - A345375(n).
a(n) <= A324966(n), with equality if and only if n is squarefree (A005117).
Additive with a(p^e) = 1 if e = 1 and primepi(p) is odd and 0 otherwise. (End)

A366529 Heinz numbers of integer partitions of even numbers with at least one even part.

Original entry on oeis.org

3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   3: {2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  36: {1,1,2,2}
  37: {12}
  39: {2,6}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

The complement is counted by A047967.
For all even parts we have A066207, counted by A035363, odd A066208.
Not requiring an even part gives A300061.
For odd instead of even we have A300063.
Not requiring even sum gives A324929.
Partitions of this type are counted by A366527.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]
Showing 1-10 of 12 results. Next