cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A321469 Number of factorizations of n into factors > 1 with different sums of prime indices. Number of multiset partitions of the multiset of prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 7, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 8, 1, 3, 3, 5, 1, 5, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).

Examples

			The a(72) = 8 multiset partitions with distinct block-sums:
    {{1,1,1,2,2}}
   {{1},{1,1,2,2}}
   {{2},{1,1,1,2}}
   {{1,1},{1,2,2}}
   {{1,2},{1,1,2}}
   {{2,2},{1,1,1}}
  {{1},{2},{1,1,2}}
  {{1},{1,1},{2,2}}
Missing from this list are:
    {{1},{1},{1,2,2}}
    {{1},{1,2},{1,2}}
    {{2},{2},{1,1,1}}
    {{2},{1,1},{1,2}}
   {{1},{1},{1},{2,2}}
   {{1},{1},{2},{1,2}}
   {{1},{2},{2},{1,1}}
  {{1},{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[primeMS[n]],UnsameQ@@Sort[Total/@#]&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A321469(n, m=n, facs=List([])) = if(1==n, all_have_different_sum_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A321469(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A326534 MM-numbers of multiset partitions where every part has the same sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A298538 in lacking 187.
These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&]

A275780 Number of set partitions of [n] into blocks with distinct element sums.

Original entry on oeis.org

1, 1, 2, 4, 12, 43, 160, 668, 3098, 15465, 83100, 477651, 2914505, 18795814, 127790544, 911448954, 6808162094, 53067398065, 430956571977, 3636314065247, 31841519540324, 288664242344692, 2706949104147162, 26205222185730884, 261681461422075548, 2691088457402830312
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2016

Keywords

Examples

			a(3) = 4: 123, 13|2, 1|23, 1|2|3.
a(4) = 12: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],UnsameQ@@Total/@#&]],{n,0,10}] (* Gus Wiseman, Jul 13 2019 *)

Formula

a(n) = A000110(n) - A275781(n).

Extensions

a(17)-a(25) from Christian Sievers, Aug 20 2024

A320324 Numbers of which each prime index has the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 85, 89, 91, 93, 97, 99, 101, 103, 107, 109, 113, 121, 123, 125, 127, 128, 131, 135, 137, 139, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The terms together with their corresponding multiset multisystems (A302242):
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  33: {{1},{3}}
  37: {{1,1,2}}
  41: {{6}}
  43: {{1,4}}
  45: {{1},{1},{2}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]
  • PARI
    is(n) = #Set(apply(p -> bigomega(primepi(p)), factor(n)[,1]~))<=1 \\ Rémy Sigrist, Oct 11 2018

A326519 Number of normal multiset partitions of weight n where each part has a different sum.

Original entry on oeis.org

1, 1, 3, 11, 51, 259, 1461, 9133, 62348, 459547, 3632419
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 11 normal multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{2}}  {{1,2,2}}
                        {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1},{2,2}}
                        {{1},{2,3}}
                        {{2},{1,2}}
                        {{2},{1,3}}
                        {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Total/@#&]],{n,0,5}]

Extensions

a(8)-a(10) from Robert Price, Apr 03 2025

A381717 Number of integer partitions of n that cannot be partitioned into constant multisets with distinct block-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 3, 2, 3, 6, 7, 10, 15, 15, 28, 37, 47, 64, 71, 97, 139, 173, 215, 273, 361, 439, 551, 691, 853, 1078, 1325, 1623, 2046, 2458, 2998, 3697, 4527, 5472, 6590, 7988, 9590, 11598, 13933, 16560, 19976, 23822, 28420, 33797, 40088, 47476, 56369, 66678
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Conjecture: Also the number of integer partitions of n having no permutation with all distinct run-sums, ranked by zeros of A382876. In other words, a partition has a permutation with all distinct run-sums iff it has a multiset partition into constant blocks with all distinct block-sums, where the run-sums of a sequence are obtained by splitting it into maximal runs and taking their sums.

Examples

			For y = (3,2,2,1) we have the multiset partition {{3},{2,2},{1}}, so y is not counted under a(8).
For y = (3,2,1,1,1) there are 3 multiset partitions into constant multisets:
  {{3},{2},{1,1,1}}
  {{3},{2},{1,1},{1}}
  {{3},{2},{1},{1},{1}}
but none of these has distinct block-sums, so y is counted under a(8).
For y = (3,3,1,1,1,1,1,1) we have multiset partitions:
  {{1},{3,3},{1,1,1,1,1}}
  {{1,1},{3,3},{1,1,1,1}}
  {{1},{1,1},{3,3},{1,1,1}}
so y is not counted under a(12).
The a(4) = 1 through a(13) = 10 partitions:
  211  .  .  3211  422    4221  6211   4322     633      5422
                   4211   5211  33211  7211     8211     6331
                   32111        42211  43211    43221    9211
                                       422111   44211    54211
                                       431111   53211    63211
                                       3221111  432111   333211
                                                4221111  432211
                                                         532111
                                                         4321111
                                                         42211111
		

Crossrefs

Twice-partitions of this type (constant with distinct) are counted by A279786.
Multiset partitions of this type are ranked by A326535 /\ A355743.
These partitions are ranked by A381636, zeros of A381635.
For strict instead of constant blocks we have A381990, see A381806, A381633, A382079.
For equal instead of distinct block-sums we have A381993.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers, see A381455, A381453.
A001055 counts factorizations, strict A045778, see A317141, A300383.
A050361 counts factorizations into distinct prime powers.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Select[Join@@@Tuples[mce/@Split[#]],UnsameQ@@Total/@#&]=={}&]],{n,0,30}]

Extensions

a(37)-a(53) from Robert Price, Mar 31 2025

A382201 MM-numbers of sets of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 145, 146, 149, 155, 157, 158, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A302494 in lacking 143, corresponding to the multiset partition {{1,2},{3}}.
Also products of prime numbers of squarefree index such that the factors all have distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  22: {{},{3}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
  34: {{},{4}}
  39: {{1},{1,2}}
		

Crossrefs

Set partitions of this type are counted by A275780.
Twice-partitions of this type are counted by A279785.
For just sets of sets we have A302478.
For distinct blocks instead of block-sums we have A302494.
For equal instead of distinct sums we have A302497.
For just distinct sums we have A326535.
For normal multiset partitions see A326519, A326533, A326537, A381718.
Factorizations of this type are counted by A381633. See also A001055, A045778, A050320, A050326, A321455, A321469, A382080.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@SquareFreeQ/@prix[#]&&UnsameQ@@Total/@prix/@prix[#]&]

Formula

Equals A302478 /\ A326535.

A326533 MM-numbers of multiset partitions where each part has a different length.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 53, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 86, 87, 89, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different Omega (number of prime factors counted with multiplicity). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average preceded by their MM-numbers begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  31: {{5}}
  34: {{},{4}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@PrimeOmega/@primeMS[#]&]

A326537 MM-numbers of multiset partitions where each part has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  22: {{},{3}}
  23: {{2,2}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&]

A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 7 multiset partitions:
  {1} {11}   {111}     {1111}       {11111}         {111111}
      {1}{1} {2}{11}   {11}{11}     {2}{11}{11}     {111}{111}
             {1}{1}{1} {2}{2}{11}   {2}{2}{2}{11}   {22}{1111}
                       {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11}
                                                    {2}{2}{11}{11}
                                                    {2}{2}{2}{2}{11}
                                                    {1}{1}{1}{1}{1}{1}
The a(1) = 1 through a(7) = 5 factorizations:
  2  4    8      16       32         64           128
     2*2  3*4    4*4      3*4*4      8*8          3*4*4*4
          2*2*2  3*3*4    3*3*3*4    9*16         3*3*3*4*4
                 2*2*2*2  2*2*2*2*2  4*4*4        3*3*3*3*3*4
                                     3*3*4*4      2*2*2*2*2*2*2
                                     3*3*3*3*4
                                     2*2*2*2*2*2
		

Crossrefs

Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A255906 counts normal multiset partitions, row sums of A317532.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A304969, A356945.
Set multipartitions: A116540, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t
    lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025

Formula

G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025

Extensions

Terms a(16) and beyond from Christian Sievers, Apr 04 2025
Showing 1-10 of 26 results. Next