A338613 Numbers given by a(n) = 1 + floor(c^(n^1.5)) where c=2.2679962677... is the constant defined at A338837.
2, 3, 11, 71, 701, 9467, 168599, 3860009, 111498091, 4002608003, 176359202639, 9437436701437, 607818993573569, 46744099128452807, 4262700354254812091, 458091929703695291747, 57691186909930154615407, 8471601990692484416847631, 1443868262009075144775972529
Offset: 0
Keywords
A338850 Continued fraction expansion of the smallest constant 'c' such that the numbers 1+floor(c^(n^1.5)) are distinct primes for all n >= 0.
2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 13, 6, 1, 3, 5, 1, 5, 1, 7, 17, 1, 3, 1, 11, 18, 3, 1, 2, 1, 2, 1, 2, 17, 15, 1, 69, 3, 1, 2, 1, 1, 1, 1, 33, 1, 3, 2, 4, 17, 1, 3, 2, 2, 1, 2, 6, 1, 11, 3, 2, 1, 1, 1, 17, 1, 7, 5, 2, 2, 2, 84, 1, 8, 3, 1, 1, 22, 3698, 2, 2, 1, 1, 2, 1, 7, 2, 1, 1, 1, 1, 3, 1, 5, 15, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 16, 1, 7, 2, 2, 3, 1, 9
Offset: 1
Examples
2+1/(3+1/(1+1/(2+1/(1+1/(2+1/(1+1/(1+1/(1+1/(1+1/(3+1/(1+1/(2+1/(13+1/(6]= 590652/260429 = 2.26799626769... The constant 'c' is equal to 2.267996267706724247328553280725371774527042254400818772275…
Programs
-
PARI
c(n=40, prec=100)={ my(curprec=default(realprecision)); default(realprecision, max(prec, curprec)); my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=1+floor(c^(j^d)); until(ok, ok=1; p=smpr(b); listput(a,p,j+1); if(p!=b, c=(p-1)^(j^(-d)); for(k=1,j-2, b=1+floor(c^(k^d)); if(b!=a[k+1], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(c); }; contfrac(c(50,200),115) \\ François Marques, Nov 17 2020
A339457 Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1.
1, 5, 0, 3, 9, 2, 8, 5, 2, 4, 0, 6, 9, 5, 2, 0, 6, 3, 3, 5, 2, 7, 6, 8, 9, 0, 6, 7, 8, 9, 7, 5, 8, 3, 1, 9, 9, 1, 9, 0, 7, 3, 8, 8, 4, 9, 5, 8, 1, 1, 3, 8, 4, 2, 9, 0, 0, 2, 9, 9, 9, 3, 5, 0, 6, 5, 7, 6, 5, 9, 5, 4, 7, 5, 6, 1, 6, 3, 0, 5, 7, 6, 4, 3, 1, 7, 1, 0, 1, 8, 9, 0, 8, 0, 8, 8, 6, 5, 2, 2, 4, 6, 8, 7, 4, 0, 1, 3, 0
Offset: 1
Comments
Assuming Cramer's conjecture on prime gaps, it can be proved that there exists at least one constant d such that all floor(2^(n^d)) are primes for n>=1 as large as required. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n)=floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime, then a(k)=b
11. If k
12. go to 1.
112 decimal digits of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.
Examples
1.5039285240695206335276890678975831991907388495811384290029993506576595475616...
Links
- Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
Programs
-
PARI
A339457(n=63, prec=200) = { \\ returns the list of the first digits of the constant. \\ the number of digits increases faster than n my(curprec=default(realprecision)); default(realprecision, max(prec,curprec)); my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=floor(c^(j^d)); until(ok, p=smpr(b); ok = 1; listput(a,p,j); if(p!=b, d=log(log(p)/log(c))/log(j); for(k=1,j-2, b=floor(c^(k^d)); if(b!=a[k], ok=0; j=k; break; ); ); ); ); ); my(p=floor(-log(d-log(log(a[n-2])/log(c))/log(n-2))/log(10)) ); default(realprecision, curprec); return(digits(floor(d*10^p),10)); } \\ François Marques, Dec 08 2020
A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.
1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
Offset: 1
Examples
1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522... The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
Programs
-
PARI
A339458(n=63, prec=200)={ my(curprec=default(realprecision)); default(realprecision, max(prec,curprec)); my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=floor(c^(j^d)); until(ok, p=smpr(b); ok = 1; listput(a,p,j); if(p!=b, d=log(log(p)/log(c))/log(j); for(k=1,j-2, b=floor(c^(k^d)); if(b!=a[k], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(contfrac(d)); } \\ François Marques, Dec 08 2020
A339459 Prime numbers a(n) = floor(2^(n^d)) for all n>=1 where d=1.5039285240... is the constant defined at A339457.
2, 7, 37, 263, 2437, 28541, 414893, 7368913, 157859813, 4035572951, 122006926709, 4328504865941, 178988464493359, 8575347401843113, 473485756611713633, 29985730185033339911, 2168685169398896331137, 178419507110725228550743
Offset: 1
Keywords
Comments
Assuming Cramer's conjecture on prime gaps is true, it can be proved that there exists at least one constant d such that all terms of the sequence are primes. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n) = floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime then a(k)=b
11. If k
12. go to 1.
112 decimals of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.
Examples
This example illustrates the importance of doing full precision calculations: a(19) = floor(2^(19^d)) = floor(2^83.7826351429215150692195114432) = 16637432012996855576590853. Here, the precision required on the exponent of 2 is 28 decimals in order to obtain the correct value for a(19). And the precision required keeps increasing with the index value n.
Links
- Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
Programs
-
PARI
A339459(n=30, prec=100) = { \\ if precision is large enough, returns the list of first n terms of the sequence my(curprec=default(realprecision)); default(realprecision, max(prec,curprec)); my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=floor(c^(j^d)); until(ok, p=smpr(b); ok = 1; listput(a,p,j); if(p!=b, d=log(log(p)/log(c))/log(j); for(k=1,j-2, b=floor(c^(k^d)); if(b!=a[k], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(a); } \\ François Marques, Dec 08 2020
Formula
a(n) = floor(2^(n^d)) where d=1.5039285240...
Comments
Links
Crossrefs
Programs
PARI
Formula