cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072034 a(n) = Sum_{k=0..n} binomial(n,k)*k^n.

Original entry on oeis.org

1, 1, 6, 54, 680, 11000, 217392, 5076400, 136761984, 4175432064, 142469423360, 5372711277824, 221903307604992, 9961821300640768, 482982946946734080, 25150966159083264000, 1400031335107317628928, 82960293298087664648192
Offset: 0

Views

Author

Karol A. Penson, Jun 07 2002

Keywords

Comments

The number of functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets. - Geoffrey Critzer, Sep 16 2012

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*k^n,k=0..n),n=0..17); # Peter Luschny, Jun 09 2015
  • Mathematica
    Table[Sum[Binomial[n,k]k^n,{k,0,n}],{n,1,20}] (* Geoffrey Critzer, Sep 16 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 10 2017
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*k^n); \\ Michel Marcus, Nov 10 2017

Formula

E.g.f.: 1/(1+LambertW(-x*exp(x))). - Vladeta Jovovic, Mar 29 2008
a(n) ~ (n/(e*LambertW(1/e)))^n/sqrt(1+LambertW(1/e)). - Vaclav Kotesovec, Nov 26 2012
O.g.f.: Sum_{n>=0} n^n * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018

Extensions

Offset set to 0 and a(0) = 1 prepended by Peter Luschny, Jun 09 2015
E.g.f. edited to include a(0)=1 by Robert Israel, Jun 09 2015

A336828 a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.

Original entry on oeis.org

1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020

Formula

a(n) ~ c * d^n * (n-1)!, where d = (1 + 2*LambertW(exp(-1/2)/2)) / (4*LambertW(exp(-1/2)/2)^2) = 6.476217542109791521947605963458797355564... and c = 0.21617818094152997942246965143216887599763501682724844713834495... - Vaclav Kotesovec, Feb 20 2021
Showing 1-2 of 2 results.