Original entry on oeis.org
1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199424904, 71243760, 11481120, 987840, 40320
Offset: 1
Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
1;
1, 2;
1, 12, 6;
1, 86, 108, 24;
1, 840, 2310, 960, 120;
1, 11642, 65700, 42960, 9000, 720;
1, 227892, 2583126, 2510760, 712320, 90720, 5040;
...
A055533
Number of labeled order relations on n nodes in which longest chain has n-1 nodes.
Original entry on oeis.org
1, 12, 108, 960, 9000, 90720, 987840, 11612160, 146966400, 1995840000, 28979596800, 448345497600, 7366565606400, 128152088064000, 2353813862400000, 45527990796288000, 925143000477696000
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
A column or diagonal of triangle in
A342587.
A361951
Triangle read by rows: T(n,k) is the number of labeled weakly graded (ranked) posets with n elements and rank k.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 86, 108, 24, 0, 1, 840, 2190, 840, 120, 0, 1, 11642, 55620, 31800, 6840, 720, 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040, 0, 1, 6285806, 82938828, 80529624, 24509520, 4626720, 584640, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 12, 6;
0, 1, 86, 108, 24;
0, 1, 840, 2190, 840, 120;
0, 1, 11642, 55620, 31800, 6840, 720;
0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040;
...
-
\\ Here C(n) gives columns of A361950 as vector of e.g.f.'s.
S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
C(n,m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
T(n)={my(c=C(n), b=vector(n+1, h, c[h]/c[max(h-1,1)])); Mat(vector(n+1, h, Col(serlaplace(b[h]-if(h>1, b[h-1])), -n-1)))}
{ my(A=T(7)); for(n=1, #A, print(A[n, 1..n])) }
A342501
T(n,k) is the number of connected labeled posets with n elements and rank k: triangle read by rows.
Original entry on oeis.org
1, 0, 2, 0, 6, 6, 0, 38, 84, 24, 0, 390, 1710, 840, 120, 0, 6062, 49740, 36840, 8280, 720, 0, 134526, 2050566, 2184000, 646800, 85680, 5040, 0, 4172198, 118645044, 177549624, 65313360, 10735200, 947520, 40320
Offset: 1
The table starts in row n=1 and shows ranks k>=0:
1: 1
2: 0 2
3: 0 6 6
4: 0 38 84 24
5: 0 390 1710 840 120
6: 0 6062 49740 36840 8280 720
7: 0 134526 2050566 2184000 646800 85680 5040
8: 0 4172198 118645044 177549624 65313360 10735200 947520 40320
A055531
Number of labeled order relations on n nodes in which longest chain has 2 nodes.
Original entry on oeis.org
2, 12, 86, 840, 11642, 227892, 6285806, 243593040, 13262556722, 1014466283292, 109128015915206, 16521353903210520, 3524056001906654762, 1059868947134489801412, 449831067019305308555486, 269568708630308018001547680, 228228540531327778410439620962
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
A column or diagonal of triangle in
A342587.
A055532
Number of labeled order relations on n nodes in which longest chain has 3 nodes.
Original entry on oeis.org
6, 108, 2310, 65700, 2583126, 142259628, 11012710470, 1196543891700, 181782466114326, 38435786111785788, 11256358984173551430
Offset: 3
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
A column or diagonal of triangle in
A342587.
A055534
Number of labeled order relations on n nodes in which longest chain has n-2 nodes.
Original entry on oeis.org
1, 86, 2310, 42960, 712320, 11481120, 186671520, 3116534400, 53907638400, 970417324800, 18217668268800
Offset: 3
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
A column or diagonal of triangle in
A342587.
Showing 1-7 of 7 results.
Comments