cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081064 Irregular array, read by rows: T(n,k) is the number of labeled acyclic digraphs with n nodes and k arcs (n >= 0, 0 <= k <= n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 12, 6, 1, 12, 60, 152, 186, 108, 24, 1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120, 1, 30, 420, 3600, 20790, 83952, 240480, 496680, 750810, 838130, 691020, 416160, 178230, 51480, 9000, 720, 1, 42, 840, 10570, 93030, 601944
Offset: 0

Views

Author

Vladeta Jovovic, Apr 15 2003

Keywords

Examples

			Array T(n,k) (with n >= 0 and 0 <= k <= n*(n-1)/2) begins as follows:
  1;
  1;
  1,  2;
  1,  6,  12,   6;
  1, 12,  60, 152,  186,  108,   24;
  1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120;
  ...
From _Petros Hadjicostas_, Apr 10 2020: (Start)
For n=2 and k=2, we have T(2,2) = 2 labeled directed acyclic graphs with 2 nodes and 2 arcs: [A (double ->) B] and [B (double ->) A].
For n=3 and k=4, we have T(3,4) = 6 labeled directed acyclic graphs with 3 nodes and 4 arcs: [X (double ->) Y (single ->) Z (single <-) X] with (X,Y,Z) a permutation of {A,B,C}. (End)
		

Crossrefs

Cf. A003024 (row sums), A055533 (subdiagonal).
Columns: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).

Programs

  • Maple
    A081064gf := proc(n,x)
        local m,a ;
        option remember;
        if n = 0 then
            1;
        else
            a := 0 ;
            for m from 1 to n do
                a := a+(-1)^(m-1)*binomial(n,m)*(1+x)^(m*(n-m)) *procname(n-m,x) ;
            end do:
            expand(a) ;
        end if;
    end proc:
    A081064 := proc(n,k)
        coeff(A081064gf(n,x),x,k) ;
    end proc:
    for n from 0 to 8 do
        for k from 0 do
            tnk := A081064(n,k) ;
            if tnk =0 then
                break;
            end if;
            printf("%d ",tnk) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Mar 21 2019
  • Mathematica
    nn = 6; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + x)^(k (n - k)) a[   n - k], {k, 1, n}]; a[0] = 1; Table[CoefficientList[a[n], x], {n, 0, nn}] // Grid (* Geoffrey Critzer, Mar 11 2023 *)
  • PARI
    B(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, (1+'y)^(i*(#u-j))*((1+'y)^i-1)^j * binomial(n,i) * u[j])))); v}
    T(n)={my(v=B(n)); vector(#v+1, n, if(n==1, [1], Vecrev(vecsum(v[n-1]))))}
    { my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Dec 27 2021

Formula

1 = 1*exp(-x) + 1*exp(-(1+y)*x)*x/1! + (2*y+1)*exp(-(1+y)^2*x)*x^2/2! + (6*y^3 + 12*y^2 + 6*y + 1)*exp(-(1+y)^3*x)*x^3/3! + (24*y^6 + 108*y^5 + 186*y^4 + 152*y^3 + 60*y^2 + 12*y + 1)*exp(-(1+y)^4*x)*x^4/4! + (120*y^10 + 960*y^9 + 3330*y^8 + 6540*y^7 + 7960*y^6 + 6180*y^5 + 3050*y^4 + 940*y^3 + 180*y^2 + 20*y + 1)*exp(-(1+y)^5*x)*x^5/5! + ... - Vladeta Jovovic, Jun 07 2005
We explain Vladeta Jovovic's functional equation above. If F_n(y) = Sum_{k = 0..n*(n-1)/2) T(n,k) * y^k for n >= 0, then Sum_{n >= 0} F_n(y) * exp(-(1 + y)^n * x) * x^n/n! = 1. - Petros Hadjicostas, Apr 11 2020
From Petros Hadjicostas, Apr 10 2020: (Start)
If A_n(x) = Sum_{k >= 0} T(n,k)*x^k (with T(n,k) = 0 for k > n*(n-1)/2)), then Sum_{m=1..n} (-1)^(m-1) * binomial(n,m) * (1 + x)^(m*(n-m)) * A_m(x) = 1.
T(n,0) = 1, T(n,1) = n*(n-1), T(n,2) = 12*binomial(n+1,4), and T(n,3) = binomial(n,3)*(n^3 - 5*n - 6).
Also, T(n, n*(n-1)/2 - 1) = A055533(n) = n!*(n-1)^2/2 for n > 1. (End)

Extensions

T(0,0) = 1 prepended by Petros Hadjicostas, Apr 11 2020

A152818 Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
Offset: 0

Views

Author

Paul Curtz, Dec 13 2008

Keywords

Comments

A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009

Examples

			From _Omar E. Pol_, Jan 06 2009: (Start)
Array begins:
  1,    1,      2,        6,         24,          120, ...
  1,    4,     18,       96,        600,         4320, ...
  1,   12,    108,      960,       9000,        90720, ...
  1,   32,    540,     7680,     105000,      1451520, ...
  1,   80,   2430,    53760,    1050000,     19595520, ...
  1,  192,  10206,   344064,    9450000,    235146240, ...
  1,  448,  40824,  2064384,   78750000,   2586608640, ...
  1, 1024, 157464, 11796480,  618750000,  26605117440, ...
  1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
  1;
  1,   1;
  1,   4,     2;
  1,  12,    18,     6;
  1,  32,   108,    96,     24;
  1,  80,   540,   960,    600,   120;
  1, 192,  2430,  7680,   9000,  4320,   720;
  1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
		

Crossrefs

Programs

  • Magma
    A152818:= func< n,k | (k+1)^(n-k)*Factorial(k)*Binomial(n,k) >;
    [A152818(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
  • Mathematica
    len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n,0,m}, {k,0,m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
    T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
  • PARI
    A(n,k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
    
  • Sage
    def A152818_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return P.coefficients()
    for n in (0..12): print(A152818_row(n))  # Peter Luschny, May 03 2013
    

Formula

E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)

Extensions

Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009

A342587 Triangle, read by rows: T(n,k) is the number of labeled order relations on n nodes in which the longest chain has k nodes (n>=1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199357704, 71310960, 11481120, 987840, 40320, 1, 243593040, 11012710470, 21774014640, 9501062760, 1781015040
Offset: 1

Views

Author

R. J. Mathar and Brendan McKay, Mar 16 2021

Keywords

Comments

Corrects Comtet's table for k=4 and 5 in row n=8.

Examples

			Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
  1;
  1,      2;
  1,     12,       6;
  1,     86,     108,      24;
  1,    840,    2310,     960,    120;
  1,  11642,   65700,   42960,   9000,   720;
  1, 227892, 2583126, 2510760, 712320, 90720, 5040;
  ...
		

Crossrefs

Cf. A000142 (diagonal), A001035 (row sums), A055531 (k=2), A055532 (k=3), A055533 (subdiagonal), A055534 (subdiagonal), A081064, A342501 (connected).

A154306 a(n) = (n+1)^3*(3+n)!/6.

Original entry on oeis.org

1, 32, 540, 7680, 105000, 1451520, 20744640, 309657600, 4849891200, 79833600000, 1381360780800, 25107347865600, 478826764416000, 9568689242112000, 200074178304000000, 4370687116443648000, 99607063051431936000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 3 of square array A152818.

Crossrefs

Programs

Formula

E.g.f.: (1 + 25*x + 67*x^2 + 27*x^3)/(1-x)^7. - R. J. Mathar, Dec 21 2011

Extensions

More terms from Sean A. Irvine, Dec 01 2009

A154307 a(n) = (n+1)^4*(4+n)!/24.

Original entry on oeis.org

1, 80, 2430, 53760, 1050000, 19595520, 363031200, 6812467200, 130947062400, 2594592000000, 53182390060800, 1129830653952000, 24898991749632000, 569337009905664000, 13505007035520000000, 332172220849717248000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 4 of square array A152818.

Crossrefs

Programs

  • Magma
    [(n+1)^4*Factorial(4+n)/24: n in [0..20]]; // Vincenzo Librandi, Sep 11 2016
  • Mathematica
    Table[(n + 1)^4*(4 + n)!/24, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)

Formula

E.g.f.: (1 + 71*x + 531*x^2 + 821*x^3 + 256*x^4)/(1-x)^9. - R. J. Mathar, Dec 21 2011

Extensions

Extended by Max Alekseyev, Apr 13 2009

A154308 a(n) = (n+1)^5*(5+n)!/120.

Original entry on oeis.org

1, 192, 10206, 344064, 9450000, 235146240, 5590680480, 130799370240, 3064161260160, 72648576000000, 1755018872006400, 43385497111756800, 1100535435333734400, 28694585299245465600, 769785401024640000000, 21259022134381903872000, 604515265659140419584000, 17698965059877321572352000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 5 of square array A152818.

Crossrefs

Programs

  • Magma
    [(n+1)^5*Factorial(5+n)/120: n in [0..20]]; // Vincenzo Librandi, Sep 11 2016
    
  • Mathematica
    Table[(n + 1)^5*(5 + n)!/120, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
  • PARI
    for(n=0,25, print1((n+1)^5*(5+n)!/120, ", ")) \\ G. C. Greubel, Nov 24 2017

Formula

a(n) = A000142(n+1)*A000583(n+1)*A000389(n+5). - R. J. Mathar, Jan 17 2009
E.g.f.: (1 + 181*x + 3046*x^2 + 11606*x^3 + 12281*x^4 + 3125*x^5)/(1-x)^11. - R. J. Mathar, Dec 21 2011

Extensions

More terms from R. J. Mathar, Jan 17 2009

A280556 a(n) = Sum_{k=1..n} k^2 * (k+1)!.

Original entry on oeis.org

0, 2, 26, 242, 2162, 20162, 201602, 2177282, 25401602, 319334402, 4311014402, 62270208002, 958961203202, 15692092416002, 271996268544002, 4979623993344002, 96035605585920002, 1946321606541312002, 41359334139002880002, 919636959090769920002, 21356013827774545920002
Offset: 0

Views

Author

Michel Marcus, Jan 05 2017

Keywords

Comments

Partial sums of 2*A055533.

Crossrefs

Programs

  • Maple
    A280556:=n->add(k^2*(k+1)!, k=1..n): seq(A280556(n), n=0..30); # Wesley Ivan Hurt, Jan 05 2017
  • Mathematica
    Table[Sum[k^2 (k+1)!,{k,n}],{n,0,20}] (* Harvey P. Dale, Jun 05 2017 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(k+1)!)

Formula

a(n) = (n - 1)*(n + 2)! + 2 (see 2nd Mathematical Reflections link). Cf. A052520.
E.g.f.: 2*exp(x) - 2*(1 - 4*x)/(1 - x)^4. - Ilya Gutkovskiy, Jan 05 2017

A008285 Erroneous version of A342587.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199424904, 71243760, 11481120, 987840, 40320
Offset: 1

Views

Author

Keywords

Examples

			Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
  1;
  1,      2;
  1,     12,       6;
  1,     86,     108,      24;
  1,    840,    2310,     960,    120;
  1,  11642,   65700,   42960,   9000,   720;
  1, 227892, 2583126, 2510760, 712320, 90720, 5040;
  ...
		

Crossrefs

Cf. A000142 (diagonal), A001035 (row sums), A055531 (k=2), A055532 (k=3), A055533 (subdiagonal), A081064, A342501 (connected).
Showing 1-8 of 8 results.