cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345578 Numbers that are the sum of eight fourth powers in three or more ways.

Original entry on oeis.org

518, 2678, 2693, 2708, 2738, 2758, 2773, 2838, 2853, 2868, 2883, 2918, 2933, 2948, 2998, 3013, 3078, 3108, 3123, 3173, 3188, 3253, 3302, 3317, 3363, 3382, 3428, 3477, 3492, 3542, 3557, 3622, 3732, 3778, 3797, 3893, 3926, 3953, 3973, 3988, 4018, 4053, 4101
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2678 is a term because 2678 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345825 Numbers that are the sum of seven fourth powers in exactly three ways.

Original entry on oeis.org

2677, 2692, 2757, 2852, 2867, 2917, 2997, 3107, 3172, 3301, 3476, 3541, 3972, 4132, 4227, 4242, 4257, 4307, 4322, 4372, 4437, 4452, 4482, 4497, 4562, 4627, 4737, 4756, 4851, 4866, 4867, 4931, 4996, 5077, 5106, 5107, 5122, 5187, 5252, 5282, 5317, 5347, 5362
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345569 at term 7 because 2932 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.

Examples

			2692 is a term because 2692 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345834 Numbers that are the sum of eight fourth powers in exactly two ways.

Original entry on oeis.org

263, 278, 293, 308, 323, 343, 358, 373, 388, 423, 438, 453, 503, 533, 548, 563, 583, 598, 613, 628, 678, 693, 758, 773, 788, 803, 853, 868, 887, 902, 917, 932, 933, 967, 982, 997, 1028, 1043, 1047, 1062, 1108, 1127, 1142, 1157, 1172, 1222, 1237, 1283, 1302
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345577 at term 14 because 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.

Examples

			278 is a term because 278 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345836 Numbers that are the sum of eight fourth powers in exactly four ways.

Original entry on oeis.org

2933, 2948, 3013, 3173, 3188, 3557, 4148, 4163, 4213, 4293, 4388, 4453, 4643, 4772, 4837, 4883, 5012, 5123, 5188, 5203, 5268, 5333, 5363, 5378, 5398, 5428, 5538, 5573, 5603, 5618, 5668, 5733, 5748, 5858, 5923, 6052, 6163, 6227, 6292, 6548, 6578, 6628, 6693
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345579 at term 10 because 4228 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4.

Examples

			2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A345845 Numbers that are the sum of nine fourth powers in exactly three ways.

Original entry on oeis.org

519, 534, 599, 774, 1143, 1364, 1539, 1604, 1619, 1814, 2579, 2644, 2659, 2679, 2694, 2709, 2724, 2739, 2754, 2759, 2774, 2789, 2819, 2834, 2839, 2869, 2884, 2899, 2994, 2999, 3079, 3109, 3124, 3139, 3303, 3318, 3333, 3334, 3363, 3364, 3379, 3383, 3398, 3463
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345587 at term 26 because 285.

Examples

			534 is a term because 534 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345785 Numbers that are the sum of eight cubes in exactly three ways.

Original entry on oeis.org

223, 230, 237, 249, 263, 270, 275, 282, 284, 286, 289, 291, 293, 308, 310, 312, 319, 326, 345, 349, 354, 364, 371, 373, 375, 378, 380, 385, 386, 387, 389, 397, 399, 404, 406, 410, 412, 413, 415, 420, 423, 439, 441, 443, 446, 449, 452, 453, 459, 460, 465, 473
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345533 at term 5 because 256 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3.
Likely finite.

Examples

			230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A346328 Numbers that are the sum of eight fifth powers in exactly three ways.

Original entry on oeis.org

52417, 54518, 69634, 70954, 84458, 84489, 84700, 85481, 87582, 92233, 101264, 102890, 112574, 117225, 119326, 134473, 143264, 143442, 143506, 149781, 151448, 158719, 159465, 165634, 166998, 167029, 167196, 167240, 168021, 170122, 174773, 183804, 184457
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345611 at term 105 because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.

Examples

			52417 is a term because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.